Photo-induced Production of Chlorine Molecules from Titanium
 Dioxide Surfaces Containing Chloride

Yuanyuan Li¹, Wei Nie¹, Yuliang Liu¹, Dandan Huang², Zheng Xu¹, Xiang Peng³,
Christian George⁴, Chao Yan⁵, Yee Jun Tham⁵, Chuan Yu³, Men Xia³, Xiao Fu³,
Xinfeng Wang⁶, Likun Xue⁶, Zhe Wang³, Zhengning Xu¹, Xuguang Chi¹, Tao Wang³,
Aijun Ding^{1,*}

- 7 ¹ Joint International Research Laboratory of Atmospheric and Earth System Sciences, School
- 8 of Atmospheric Sciences, Nanjing University, Nanjing, Jiangsu Province, 210023, China
- 9 ² State Environmental Protection Key Laboratory of Cause and Prevention of Urban Air
- 10 Pollution Complex, Shanghai Academy of Environmental Sciences, Shanghai, 200233, China
- ³ Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University,
 Hong Kong, China
- ⁴ Univ Lyon, Université Claude Bernard Lyon 1, CNRS, IRCELYON, F-69626, Villeurbanne,
 France
- ⁵ Institute for Atmospheric and Earth System Research / Physics, Faculty of Science, University
- 16 of Helsinki, P. O. Box 64, 00014, Helsinki, Finland
- 17⁶ Environment Research Institute, Shandong University, Jinan, 250100, China
- 18 * Correspondence to: Aijun Ding (dingaj@nju.edu.cn)

Abstract: Titanium dioxide (TiO₂) is extensively used with the process of urbanization, 19 20 and potentially influence the atmospheric chemistry, yet unclear. In this work, we demonstrated strong production of Cl₂ from illuminated KCl-coated TiO₂ membrane, 21 and suggest an important daytime source of chlorine radicals. We found that water and 22 oxygen were required for the reactions to proceed and Cl₂ production increased linearly 23 24 with the amount of coated KCl, the humidity of carrier gas and the light intensity. These results suggested that water promotes the reactivity of coated KCl via the interaction 25 with the crystal lattice to release free chloride ions (Cl⁻). The free Cl⁻ transfer charge to 26 O₂ via photoactivated TiO₂ to form Cl₂ and probably O₂⁻ radical. In addition to Cl₂, ClO 27

and HOCl were also observed via the complex reactions between Cl/Cl_2 and HO_x . An intensive campaign was conducted in Shanghai, during which evident daytime peak of Cl_2 was observed. Estimated Cl_2 production from TiO_2 photocatalysis can be up to 0.2 ppb/h, which were significantly higher than the photolysis of $ClNO_2$ and highly correlated to the observed Cl_2 . Our results suggest a non-negligible role of TiO_2 in atmospheric photochemistry via altering the radical budget.

34 INTRODUCTION

Titanium dioxide (TiO₂), as the best photocatalyst, has been widely used in 35 environmental remediation¹ and construction materials^{2,3}. The utilization of active TiO₂ 36 for self-cleaning⁴⁻⁶ or purifying atmospheric pollutants⁷ increased significantly with the 37 process of urbanization in recent years. These TiO₂-containing materials, as well as the 38 TiO₂-containing particles such as dust⁸ and combustion particles⁹ can play increasing 39 role in the atmospheric chemistry¹⁰⁻¹³. For example, the TiO₂ induced heterogeneous 40 photochemical processes can promote the formation of several atmospheric oxidants, 41 including HONO^{14, 15}, O₃¹¹, possibly NO₃^{8, 16}. 42

Atmospheric Cl radical, known as produced from the photolysis of Cl₂ and nitryl 43 chloride (ClNO₂), is an important atmospheric oxidant¹⁷, and influence the ozone and 44 secondary aerosol formation¹⁸⁻²⁰. Although concentrations of Cl radicals are typically 45 46 lower than those of other atmospheric radicals, they can react with most atmospheric volatile organic compounds (VOCs) faster than hydroxyl radical (OH)²¹ and therefore 47 play an important role in the atmosphere¹⁹, especially in coastal²² and polluted urban 48 areas^{20, 23, 24}. The source of ClNO₂ is generated via the heterogeneous reaction of 49 nitrogen pentoxide (N₂O₅) with particulate chloride²⁵. However, there is no consensus 50 on the main sources of Cl₂^{17, 26}. Although it is traditionally believed that Cl₂ should 51 decrease after sunrise due to its fast photolysis, several recent observations have 52 reported evident daytime peaks of Cl₂, suggesting a considerable source of light-53 activated reactions²⁷⁻²⁹ and possible contribution from photochemical sources. Herein, 54 we report the first direct laboratory observation which confirms that TiO2-mediated 55

56 photocatalytic reactions lead to the production of Cl₂, and a few other chlorinated 57 species.

58 MATERIALS AND METHODS

Sample preparation. A suspension with 50 ml of KCl solution and 0.1 g of TiO₂ 59 (Sigma-Aldrich, 21 nm primary particle size, $\ge 99.5\%$ trace metals basis, product 60 number: 718467) was prepared to homogeneously coat KCl on TiO₂ particles. The TiO₂ 61 62 particles in the suspension were then filtrated onto a 50 mm quartz membrane using a water vacuum pump. The membranes were then dried at 323 K before being used in the 63 experiment. Samples with KCl/TiO₂ mass ratios of 0.0003 g/g, 0.0006 g/g, 0.003 g/g, 64 0.0057 g/g, 0.015 g/g, 0.028 g/g and 0.06 g/g were prepared. The amount of KCl coated 65 on TiO₂ was measured by ion chromatography. A photo of a prepared sample is shown 66 in Fig. S1. 67

Laboratory experiments. Fig. S2 shows a schematic of the experimental setup of a 68 flow reactor system. The temperature of the system is kept at 293 K. Ultrapure air and 69 nitrogen were used as the carrier gas, which was separated into a dry air flow and a wet 70 air flow. The RH of the inflow to the reactor was adjusted by changing the ratio of dry 71 air to wet air. Four UV lamps were mounted close to the tube, two of which (1 and 2) 72 are used in all the experiments with irradiance of 16.3 W/m^2 , except for the experiment 73 testing the role of light intensity. The spectrum of the UV lights is shown in Fig. S3. 74 The irradiance increased from 8.4 to 35.1 W/m² from one lamp to four lamps, which 75 covered realistic ranges of solar UVA irradiance during the Shanghai campaign (Fig. 76 S4). The temperature and RH inside the flow tube were monitored continuously. Three 77 instruments, namely, a methyl iodide chemical ionization mass spectrometer (I-CIMS), 78 a NO_x analyzer and an O₃ analyzer (Text S1), were used to measure Cl₂ and related 79 species in the outflow from the tube. Four experiments were conducted during the lab 80 81 campaign, and in each of them we varied a single experimental parameter, including 82 coated KCl amounts, RH of the carrier gas, light irradiance and carrier gas types.

83 RESULTS AND DISCUSSION

Photo-induced production of Cl₂ from KCl-coated TiO₂. The main conclusion of 84 the abovementioned experiments is that significant production of Cl₂ occurred in the 85 presence of UV irradiation of a KCl-coated TiO2 membrane. As shown in Fig. 1, we 86 observed a strong production of Cl₂, up to 4-5 ppbv, from an irradiated sample, of which 87 the KCl/TiO₂ ratio was 0.028 g/g and the RH of the carrier gas was 66%. The decrease 88 in Cl₂ concentration indicated fast consumption of the coated KCl. The blank was 89 obtained in many reference experiments, including using a blank membrane, a pure 90 91 TiO₂ sample and a pure KCl sample, all of which did not show a noticeable increase of 92 Cl₂. This confirms that Cl₂ was produced from the illuminated TiO₂ surfaces containing chloride. 93

94 A series of experiments were repeated with varying conditions to investigate the underlying mechanism of Cl₂ production and its dependence on potentially relevant 95 parameters. An experiment testing the role of the amount of KCl coated on TiO_2 was 96 carried out under three different RH values of 9.6%, 38% and 66%, representing very 97 98 dry to slightly wet environments. The result at 66%, a more atmospherically relevant value, is shown in Fig. 2a. The results at the other RH values are shown in Fig. S5. The 99 observed Cl₂ concentration increased linearly as the KCl/TiO₂ ratio increased from 100 0.0003 g/g to 0.0057 g/g and reached a plateau thereafter (Fig. 2a). The differences in 101 102 both the production efficiency and saturated concentrations of Cl₂ among RH values of 9.6%, 38% and 66% were within the experimental errors, indicating that water is not a 103 limiting factor in atmospherically relevant conditions. 104

Fig. 3 shows a comparison of Cl₂ production among different carrier gases, namely, dry 105 106 nitrogen gas, wet nitrogen gas (RH = 38%), dry air and wet air (RH = 9.6%). Cl₂ cannot be observed with nitrogen carrier gas under both dry and wet conditions; instead, it is 107 observed only in the system with wet air as the carrier gas. These results suggest that 108 109 both water and oxygen are required in the reactions. To further investigate the potential role of water in the reaction, a humidity gradient experiment was conducted by 110 changing the RH of the carrier gas from 0% to 88%. Similar to the dependence on the 111 amount of coated KCl, the Cl₂ concentration increased linearly with the RH before 112

reaching a plateau (Fig. 2b), indicating that water is either a reagent or a factorinfluencing the activity of the reagent (chloride).

115 Free Cl⁻ are believed to be necessary in the reactions to provide electrons to the valence band of photoactivated TiO₂. KCl can form crystals of (KCl)₆(H₂O)_n with very little 116 water and release free Cl⁻ from the edge of the crystal lattice. This separation could be 117 promoted by the number of water molecules, as solvent-shared ion pairs $[K^+(H_2O)Cl^-]$ 118 are formed with 3-9 water molecules, whereas solvent-separated ion pairs (K⁺ and Cl⁻) 119 can be observed with 10-15 water molecules³⁰. This behavior explains why water can 120 promote the reaction at a value much lower than the deliquescence RH of KCl. Cl₂ 121 production would be determined by both the intensity of illumination and the amount 122 123 of free Cl⁻, which is influenced by both KCl and water. Under certain light irradiance, Cl₂ production will be linearly dependent on the level of free Cl⁻ (either KCl or water) 124 before reaching a plateau where Cl₂ production is saturated and limited by the irradiance 125 (Fig. 2a and 2b). 126

To test whether the observed plateau for Cl_2 production is due to the limitation of light irradiance and the relationship between them, we carried out an experiment in which the light number was adjusted from 4 to 1. The results showed that the concentration of Cl_2 produced linearly correlated with the light number and can reach greater than 10 ppbv (Fig. 2c), suggesting that the observed plateau of Cl_2 concentration in both the RH and coated KCl experiments is due to the Cl⁻ being saturated under a fixed light irradiance (2 UV lights, 16.3 W/m²).

In addition to Cl₂, we also observed the production of ClO and HOCl under 66% RH, which showed similar dependence on the amount of coated KCl as did Cl₂ (Fig. 2d). The results of 38% RH are shown in Fig. S5. ClO is another important halogen radical in the atmosphere, while HOCl can be photolyzed to an OH radical and a Cl radical. ClO is typically believed to be formed via the reaction of Cl radical and O₃ in the atmosphere, which however, was not observed during the experiment, indicating an alternative pathway via the reaction of Cl radical and HO₂ radical to form ClO. Since HO_x has been demonstrated to be produced from the photolysis of water on the surface of TiO_2^{31-33} , the reactions of Cl/Cl₂ with HO_x were thus suspected as the most likely pathway of forming ClO. HOCl can be produced from either the reaction of Cl₂ and OH or the reaction of ClO and HO₂. Note that HOCl could react with Cl⁻ ions to reproduce Cl₂. However, the concentration of HClO was too low (more than one order of magnitude) to explain the observed Cl₂ concentration.

- In summary, we observed strong production of Cl₂ and moderate production of ClO and 147 148 HOCl from the photo-induced reaction on KCl-coated TiO₂. A mechanism is proposed as the follows. Water reacts with KCl to release free Cl⁻, which act as the donor to 149 provide the electron to O_2 via the conduction and valence bands of photoactivated Ti O_2 150 and form Cl radical and O2⁻ radical³⁴. Two Cl radicals combine to form the main product, 151 the Cl₂ molecule. Water is photolyzed to OH and H^+ , which react with O_2^- immediately 152 to form HO₂ radicals. The produced Cl₂ further reacts with OH radical to form HOCl. 153 Cl radical reacts with HO₂ to produce ClO radical. Most of the products from this 154 155 reaction pathway are important atmospheric oxidants (or precursors of oxidants) and thus have the potential to influence atmospheric chemistry. 156
- 157 $TiO_2 + hv \rightarrow h^+ + e^-$
- $158 Cl⁻ + h⁺ \rightarrow Cl⁻$
- $H_2O + h^+ \rightarrow OH + H^+$
- 160 $O_2 + e^- \rightarrow O_2^-$
- 161 $O_2 \cdot + h^+ \rightarrow HO_2 \cdot$
- 162 $Cl \cdot + Cl \cdot \rightarrow Cl_2$
- 163 $Cl_2 + hv \rightarrow Cl \cdot + Cl \cdot$
- 164 $Cl + HO_2 \leftrightarrow ClO + OH$
- $165 Cl_2 + OH \rightarrow HOCl + Cl$
- 166 $ClO + HO_2 \rightarrow HOCl + O_2$
- 167 $HOCl + hv \rightarrow Cl \cdot + OH \cdot$

168 Atmospheric Implication. In this study, we demonstrated a photo-induced reaction 169 that can produce Cl_2 and in turn influence the atmospheric oxidative capacity by

forming Cl radical and ClO radical. The role of these reactions in the real atmosphere 170 depends primarily on whether there are considerable amounts of chloride-coated TiO₂ 171 materials exposed to the atmosphere. With the process of modern urbanization, TiO₂ 172 containing materials have been widely applied for building exteriors³⁵ (Fig. S7), self-173 cleaning glasses, road lamps, airport roofs, and road bricks³¹, and easily be exposure to 174 the urban atmosphere. To further identify the role of the above mentioned reactions in 175 the atmosphere, we tested some commercial TiO₂-containing materials, including 176 anatase type TiO₂, rutile type TiO₂, self-cleaning glass, photocatalytic spray and white 177 pigment. Most of these materials except rutile type TiO₂ can produce Cl₂ with different 178 efficiency (Fig. S8). 179

In an area like East China where had elevated concentration of atmospheric chloride³⁶ 180 (Fig. S9) and increased application of TiO₂ photocatalytic materials²⁹, the chloride 181 chemistry involving TiO₂ may play an important role in the atmospheric chemistry. We 182 conducted a field campaign in the city center of Shanghai, the largest city in China (Fig. 183 4), to measure the reactive chlorine compounds, including Cl₂ and ClNO₂ using an I-184 ToF-CIMS, and HCl and Cl⁻ using an online IC system (MARGA). Cl₂ revealed an 185 evident daytime peak, which cannot be explained by the photolysis of ClNO₂ and 186 indicate a missing ubiquitous daytime source of Cl₂. We calculated the production of 187 Cl₂ from TiO₂ involving reactions with the assumption of 0% - 20% of the land surfaces 188 covered by TiO₂-containing materials in urban Shanghai. Estimated Cl₂ production rate 189 from TiO₂ photocatalysis can be up to 0.2 ppb/h (see Text S3), which were significantly 190 higher than the photolysis of $ClNO_2$ and highly correlated to the observed Cl_2 (R²=0.97). 191 These results confirmed an important role of TiO₂ involved chlorine chemistry in the 192 atmosphere. However, we can't ensure that this uncertainty range, and need some more 193 statistic collection work get more details about urban usage of TiO₂. With the 194 establishment of emerging cities and the use of photocatalytic environmentally friendly 195 materials, this factor may be even higher in the future. 196

197

198 ASSOCIATED CONTENT

199 Supporting Information

200 A photo showing the prepared sample of KCl coated TiO₂ (Figure S1). The schematic of the experimental setup of a flow reactor system (Figure S2). Light spectra of the UV 201 lamb (Figure S3). Diurnal variation of UVA during the Shanghai campaign (Figure S4). 202 Dependence of the Cl₂ concentration as a function of the amount of coated KCl with 203 the RH of carrier gas at (a) 9.6%, and (b) 38% (Figure S5a and b); (c) Dependence of 204 the CIO and HOCl as a function of the amount of coated KCl with the RH of carrier 205 gas at 38% (Figure S5c). Location of the measurement site (Figure S6). Use of exterior 206 wall coatings, production of building coatings and completed construction area from 207 208 2000 to 2017 in China (Figure S7). Experiments of some commercial materials containing TiO₂ with a carrier gas of pure air of 66% RH and KCl concentration of 0.01 209 mol/L (Figure S8). Emission map of chlorine (HCl and particulate chloride) in East 210 China (Figure S9). 211

212 ACKNOWLEDGMENTS

This work was mainly funded by the National Natural Science Foundation of China 213 (NSFC) project (D0512/41675145 and D0510/91644218) and the National Key R&D 214 Program of China (2016YFC0200500 and 2016YFC0202000). Data analysis was also 215 supported by other NSFC projects (D0512/41875175 and D0510/41605098). The HK 216 PolyU team was supported by the National Natural Science Foundation of China 217 (91544213) and the Hong Kong Research Grants Council (A-PolyU502/16). Thanks to 218 219 Min Zhou of the Shang Hai Academy of Environmental Sciences for providing 220 MARGA data during the campaign.

221

Figure 1 Effect of light (2 near-UV-emitting lamps in the 350-400 nm wavelength range)

- on a KCl/TiO₂ (0.028 g/g) membrane using ultrapure air. The same blank signal was
- given by a tube with a KNO₃-coated membrane.

Figure 2 Dependence of the Cl₂ concentration as a function of (a) the amount of coated KCl, (b) the RH of the carrier gas, and (c) the light irradiance. (d) dependence of the ClO and HClO concentration as a function of the amount of coated KCl. The RH of the carrier gas was 66% in experiment (a) and (d); a sample with KCl/TiO₂ = 0.028 g/g was used in experiment (b); and the light irradiance is represented by the number of lights in experiment (c). Red circle are all data points; red line is the fitting curve; blue triangle are the first four data points, and blue line is a linear fit of these first 4 data points.

Figure 3 Effect of light (2 near-UV-emitting lamps in the 350-400 nm wavelength range)

on a KCl/TiO₂ (0.028 g/g) membrane with a carrier gas of (a) pure nitrogen with an RH

of 0%, (b) pure nitrogen with an RH of 38%, (c) ultrapure air with an RH of 0%, and

237 (d) ultrapure air with an RH of 9.6%.

233

Figure 4. (a)Diurnal variations of Cl_2 production rate from photolysis of $ClNO_2$, the TiO₂ involved processes, as well as ambient Cl_2 diurnal variation. Filled area represents a range of Cl_2 from TiO₂ photocatalysis with the assumption of 0% - 20% of the land surfaces covered by TiO₂-containing materials in urban Shanghai. (b)The correlation between Cl_2 production rate from Cl_2 observed data and that from TiO₂ involved processes when the cover factor is 5%, 10%, 15% and 20% respectively.

For Table of Contents Only (Abstract Graphic)

247 **REFERENCES**

Mills, A.; Davies, R. H.; Worsley, D., Water-purification by semiconductor photocatalysis.
 Chemical Society Reviews 1993, *22*, (6), 417-425.

Guo, M. Z.; Li, J. S.; Poon, C. S., Improved photocatalytic nitrogen oxides removal using
 recycled glass-nano-TiO₂ composites with NaOH pre-treatment. *Journal of Cleaner Production* 2019, 209, 1095-1104.

253 3. Langridge, J. M.; Gustafsson, R. J.; Griffiths, P. T.; Cox, R. A.; Lambert, R. M.; Jones, R.
254 L., Solar driven nitrous acid formation on building material surfaces containing titanium
255 dioxide: A concern for air quality in urban areas? *Atmospheric Environment* 2009, *43*, (32),
256 5128-5131.

- Sun, D.; Yu, Y.; Du, G. Aqueous paint useful for purifying atmospheric pollutants,
 comprises titanium dioxide sol, anti-static component, silica sol, surfactant, dispersant,
 coalescing agent and water. CN109370269-A, CN109370269-A 22 Feb 2019 C09D-001/00
 201929 Pages: 6 Chinese.
- Zhang, X. T.; Sato, O.; Taguchi, M.; Einaga, Y.; Murakami, T.; Fujishima, A., Self-cleaning
 particle coating with antireflection properties. *Chemistry of Materials* 2005, *17*, (3), 696-700.
- 263 6. Zhu, H. Self-cleaning ceramic paint preparation involves taking ceramic pieces washed in
 264 water, placing in muffle furnace, removing and cooling, and then crushing into ultrafine mill to
 265 obtain powder, where obtained powder is added into container. CN107216701-A,
 266 CN107216701-A 29 Sep 2017 C09D-004/06 201781 Pages: 6 Chinese.
- Feng, Z.; Han, Y. Building outside wall with high property composite thin film, has wall
 main portion whose surface is provided with inorganic protection layer that is planted with
 titanium dioxide composite function layer at surface. CN204081331-U, CN204081331-U 07
 Jan 2015 E04F-013/07 201519 Pages: 6 Chinese.
- Nie, W.; Wang, T.; Xue, L. K.; Ding, A. J.; Wang, X. F.; Gao, X. M.; Xu, Z.; Yu, Y. C.;
 Yuan, C.; Zhou, Z. S., et al., Asian dust storm observed at a rural mountain site in southern
 China: chemical evolution and heterogeneous photochemistry. *Atmos. Chem. Phys.* 2012, *12*,
 (24), 11985-11995.
- 9. Febrero, L.; Granada, E.; Regueiro, A.; Miguez, J. L., Influence of combustion parameters
 on fouling composition after wood pellet burning in a lab-scale low-power boiler. *Energies*2015, 8, (9), 9794-9816.
- 10. George, C.; Ammann, M.; D'Anna, B.; Donaldson, D. J.; Nizkorodov, S. A.,
 Heterogeneous photochemistry in the atmosphere. *Chemical Reviews* 2015, *115*, (10), 42184258.
- 11. Monge, M. E.; George, C.; D'Anna, B.; Doussin, J. F.; Jammoul, A.; Wang, J.; Eyglunent,
 G.; Solignac, G.; Daele, V.; Mellouki, A., Ozone formation from illuminated titanium dioxide
 surfaces. *Journal of the American Chemical Society* 2010, *132*, (24), 8234-+.
- 12. Ndour, M.; Conchon, P.; D'Anna, B.; Ka, O.; George, C., Photochemistry of mineral dust
 surface as a potential atmospheric renoxification process. *Geophysical Research Letters* 2009,
 36, 4.
- 287 13. Nie, W.; Ding, A. J.; Wang, T.; Kerminen, V. M.; George, C.; Xue, L. K.; Wang, W. X.;
- Zhang, Q. Z.; Petaja, T.; Qi, X. M., et al., Polluted dust promotes new particle formation and
 growth. *Scientific Reports* 2014, *4*, 6.
- 290 14. Gustafsson, R. J.; Orlov, A.; Griffiths, P. T.; Cox, R. A.; Lambert, R. M., Reduction of NO₂

- to nitrous acid on illuminated titanium dioxide aerosol surfaces: implications for photocatalysis
 and atmospheric chemistry. *Chemical Communications* 2006, (37), 3936-3938.
- 15. Ndour, M.; D'Anna, B.; George, C.; Ka, O.; Balkanski, Y.; Kleffmann, J.; Stemmler, K.;
 Ammann, M., Photoenhanced uptake of NO₂ on mineral dust: Laboratory experiments and
 model simulations. *Geophysical Research Letters* 2008, *35*, (5), 5.
- 16. Styler, S. A.; Donaldson, D. J., Photooxidation of atmospheric alcohols on laboratory
 proxies for mineral dust. *Environ. Sci. Technol.* 2011, 45, (23), 10004-10012.
- 17. Simpson, W. R.; Brown, S. S.; Saiz-Lopez, A.; Thornton, J. A.; von Glasow, R.,
 Tropospheric halogen chemistry: Sources, cycling, and impacts. *Chemical Reviews* 2015, *115*,
 (10), 4035-4062.
- 18. Li, Q. Y.; Zhang, L.; Wang, T.; Wang, Z.; Fu, X.; Zhang, Q., "New" reactive nitrogen
 chemistry reshapes the relationship of ozone to its precursors. *Environ. Sci. Technol.* 2018, *52*,
 (5), 2810-2818.
- Wang, D. S.; Ruiz, L. H., Chlorine-initiated oxidation of n-alkanes under high-NOx
 conditions: insights into secondary organic aerosol composition and volatility using a
 FIGAERO-CIMS. *Atmos. Chem. Phys.* 2018, *18*, (21), 15535-15553.
- 20. Wang, X.; Jacob, D. J.; Eastham, S. D.; Sulprizio, M. P.; Zhu, L.; Chen, Q. J.; Alexander,
- B.; Sherwen, T.; Evans, M. J.; Lee, B. H., et al., The role of chlorine in global tropospheric
 chemistry. *Atmos. Chem. Phys.* 2019, *19*, (6), 3981-4003.
- 310 21. Atkinson, R.; Baulch, D. L.; Cox, R. A.; Crowley, J. N.; Hampson, R. F.; Hynes, R. G.;
- Jenkin, M. E.; Rossi, M. J.; Troe, J., Evaluated kinetic and photochemical data for atmospheric
 chemistry: Volume II gas phase reactions of organic species. *Atmos. Chem. Phys.* 2006, *6*,
 3625-4055.
- 22. Spicer, C. W.; Chapman, E. G.; Finlayson-Pitts, B. J.; Plastridge, R. A.; Hubbe, J. M.; Fast,
- J. D.; Berkowitz, C. M., Unexpectedly high concentrations of molecular chlorine in coastal air.
 Nature 1998, *394*, (6691), 353-356.
- 317 23. Faxon, C. B.; Allen, D. T., Chlorine chemistry in urban atmospheres: a review.
 318 *Environmental Chemistry* 2013, 10, (3), 221-233.
- 319 24. Wang, T.; Tham, Y. J.; Xue, L. K.; Li, Q. Y.; Zha, Q. Z.; Wang, Z.; Poon, S. C. N.; Dube,
- W. P.; Blake, D. R.; Louie, P. K. K., et al., Observations of nitryl chloride and modeling its source and effect on ozone in the planetary boundary layer of southern China. *Journal of Geophysical Research-Atmospheres* **2016**, *121*, (5), 2476-2489.
- 323 25. Finlaysonpitts, B. J.; Ezell, M. J.; Pitts, J. N., Formation of chemically active chlorine
 324 compounds by reactions of atmospheric NaCl particles with gaseous N₂O₅ and ClONO₂. *Nature*325 1989, *337*, (6204), 241-244.
- 326 26. Phillips, G. J.; Tang, M. J.; Thieser, J.; Brickwedde, B.; Schuster, G.; Bohn, B.; Lelieveld,
- 327 J.; Crowley, J. N., Significant concentrations of nitryl chloride observed in rural continental
- Europe associated with the influence of sea salt chloride and anthropogenic emissions.
 Geophysical Research Letters 2012, *39*, 5.
- 27. Faxon, C. B.; Bean, J. K.; Hildebrandt Ruiz, L., Inland concentrations of Cl₂ and ClNO₂
 in Southeast Texas suggest chlorine chemistry significantly contributes to atmospheric
 reactivity. *Atmosphere* 2015, *6*, (10), 1487-1506.
- 28. Liao, J.; Huey, L. G.; Liu, Z.; Tanner, D. J.; Cantrell, C. A.; Orlando, J. J.; Flocke, F. M.;
- 334 Shepson, P. B.; Weinheimer, A. J.; Hall, S. R., et al., High levels of molecular chlorine in the

- Arctic atmosphere. *Nature Geoscience* **2014**, *7*, (2), 91-94.
- 336 29. Liu, X. X.; Qu, H.; Huey, L. G.; Wang, Y. H.; Sjostedt, S.; Zeng, L. M.; Lu, K. D.; Wu, Y.
- S.; Ho, M.; Shao, M., et al., High levels of daytime molecular chlorine and nitryl chloride at a rural site on the North China Plain. *Environ. Sci. Technol.* **2017**, *51*, (17), 9588-9595.
- 339 30. Sen, A.; Ganguly, B., A computational study toward understanding the separation of ions
- of potassium chloride microcrystal in water. *Theoretical Chemistry Accounts* 2012, *131*, (12),
 13.
- 342 31. Chen, H. H.; Nanayakkara, C. E.; Grassian, V. H., Titanium dioxide photocatalysis in 343 atmospheric chemistry. *Chemical Reviews* **2012**, *112*, (11), 5919-5948.
- 344 32. Henderson, M. A., A surface science perspective on TiO₂ photocatalysis. *Surface Science* 345 *Reports* 2011, *66*, (6-7), 185-297.
- 346 33. Wendt, S.; Schaub, R.; Matthiesen, J.; Vestergaard, E. K.; Wahlstrom, E.; Rasmussen, M.
- D.; Thostrup, P.; Molina, L. M.; Laegsgaard, E.; Stensgaard, I., et al., Oxygen vacancies on
 TiO₂(110) and their interaction with H₂O and O₂: A combined high-resolution STM and DFT
- study. Surface Science **2005**, 598, (1-3), 226-245.
- 350 34. Setvin, M.; Hulva, J.; Parkinson, G. S.; Schmid, M.; Diebold, U., Electron transfer between
- anatase TiO₂ and an O₂ molecule directly observed by atomic force microscopy. *Proceedings*
- of the National Academy of Sciences of the United States of America 2017, 114, (13), E2556E2562.
- 35. Kaegi, R.; Ulrich, A.; Sinnet, B.; Vonbank, R.; Wichser, A.; Zuleeg, S.; Simmler, H.; 355 Brunner, S.; Vonmont, H.; Burkhardt, M., et al., Synthetic TiO₂ nanoparticle emission from
- exterior facades into the aquatic environment. *Environmental Pollution* **2008**, *156*, (2), 233-239.
- 357 36. Yang, X.; Wang, T.; Xia, M.; Gao, X. M.; Li, Q. Y.; Zhang, N. W.; Gao, Y.; Lee, S. C.;
- 358 Wang, X. F.; Xue, L. K., et al., Abundance and origin of fine particulate chloride in continental
- 359 China. Science of the Total Environment 2018, 624, 1041-1051.

360