108 research outputs found

    Marginal zone lymphomas in children and the young adult population; characterization of genetic aberrations by FISH and RT-PCR

    Get PDF
    Marginal zone lymphomas present rarely in children and young adults as either primary nodal or extranodal disease and have an excellent prognosis. To date, chromosomal aberrations have not been analyzed in the pediatric and young adult population. We undertook a study to analyze genetic alterations in nodal and extranodal marginal zone lymphomas in children and young adults using fluorescence in situ hybridization (FISH) and RT-PCR. These findings were correlated with clinical features at presentation and immunophenotype. Forty-one cases were identified meeting these criteria. The age range was 1.5-29 years old with 49% of the cases <18 years of age. 73% of the marginal zone lymphoma cases showed evidence of light chain restriction by immunohistochemistry or flow cytometry. CD43 was coexpressed in 83%. 85% of the marginal zone lymphoma cases tested showed evidence of immunoglobulin heavy chain gene rearrangement. Fifty-nine percent of the cases were nodal marginal zone lymphomas with a median age at presentation of 16 years and an M/F ratio of 7:1. Twenty-one percent of the nodal marginal zone lymphoma cases contained genetic aberrations. Seventeen percent contained trisomy 18 with one case containing an additional trisomy 3. A translocation of the immunoglobulin heavy chain gene to an unknown partner gene was present in one case. Forty-one percent of the cases were extranodal marginal zone lymphomas with a median age of 24 years and a M/F ratio of 1.4:1. Eighteen percent of the extranodal marginal zone lymphoma cases contained genetic aberrations. The t(14;18) involving the IGH and MALT1 genes was present in one case, tetraploidy was present in one case, and another case contained trisomy 3. Overall the incidence of genetic aberrations in marginal zone lymphomas in the pediatric and young adult population is low, but the aberrations seen are similar to those seen in the adult population

    Primary CNS T-cell Lymphomas: A Clinical, Morphologic, Immunophenotypic, and Molecular Analysis.

    Get PDF
    Primary central nervous system (CNS) lymphomas are relatively rare with the most common subtype being diffuse large B-cell lymphoma. Primary CNS T-cell lymphomas (PCNSTL) account for 1 mutation, and none showed overlapping mutations. These included mutations in DNMT3A, KRAS, JAK3, STAT3, STAT5B, GNB1, and TET2 genes, genes implicated previously in other T-cell neoplasms. The outcome was heterogenous; 2 patients are alive without disease, 4 are alive with disease, and 6 died of disease. In conclusion, PCNSTLs are histologically and genomically heterogenous with frequent phenotypic aberrancy and a cytotoxic phenotype in most cases

    Durvalumab in Combination with Olaparib in Patients with Relapsed SCLC: Results from a Phase II Study

    Get PDF
    Purpose: Despite high tumor mutationburden, immune checkpoint blockade has limited efficacy in SCLC. We hypothesized that poly (ADP-ribose) polymerase inhibition could render SCLC more susceptible to immune checkpoint blockade. Methods: A single-arm, phase II trial (NCT02484404) enrolled patients with relapsed SCLC who received durvalumab, 1500 mg every 4 weeks, and olaparib, 300 mg twice a day. The primary outcome was objective response rate. Correlative studies included mandatory collection of pretreatment and during-treatment biopsy specimens, which were assessed to define SCLC immunephenotypes: desert (CD8-positive T-cell prevalence low), excluded (CD8-positive T cells in stroma immediately adjacent/within tumor), and inflamed (CD8-positive T cells in direct contact with tumor). Results: A total of 20 patients were enrolled. Their median age was 64 years, and most patients (60%) had platinum-resistant/refractory disease. Of 19 evaluable patients, two were observed to have partial or complete responses (10.5%), including a patient with EGFR-transformed SCLC. Clinical benefit was observed in four patients (21.1% [95% confidence interval: 6.1%–45.6%]) with confirmed responses or prolonged stable disease (≥8 months). The most common treatment-related adverse events were anemia (80%), lymphopenia (60%), and leukopenia (50%). Nine of 14 tumors (64%) exhibited an excluded phenotype; 21% and 14% of tumors exhibited the inflamed and desert phenotypes, respectively. Tumor responses were observed in all instances in which pretreatment tumors showed an inflamed phenotype. Of the five tumors without an inflamed phenotype at baseline, no during-treatment increase in T-cell infiltration or programmed death ligand 1 expression on tumor-infiltrating immune cells was observed. Conclusions: The study combination did not meet the preset bar for efficacy. Pretreatment and during-treatment biopsy specimens suggested that tumor immune phenotypes may be relevant for SCLC responses to immune checkpoint blockade combinations. The predictive value of preexisting CD8-positive T-cell infiltrates observed in this study needs to be confirmed in larger cohorts

    The Genetic Basis of Hepatosplenic T-cell Lymphoma

    Get PDF
    Hepatosplenic T cell lymphoma (HSTL) is a rare and lethal lymphoma; the genetic drivers of this disease are unknown. Through whole exome sequencing of 68 HSTLs, we define recurrently mutated driver genes and copy number alterations in the disease. Chromatin modifying genes including SETD2, INO80 and ARID1B were commonly mutated in HSTL, affecting 62% of cases. HSTLs manifest frequent mutations in STAT5B (31%), STAT3 (9%), and PIK3CD (9%) for which there currently exist potential targeted therapies. In addition, we noted less frequent events in EZH2, KRAS and TP53. SETD2 was the most frequently silenced gene in HSTL. We experimentally demonstrated that SETD2 acts as a tumor suppressor gene. In addition, we found that mutations in STAT5B and PIK3CD activate critical signaling pathways important to cell survival in HSTL. Our work thus defines the genetic landscape of HSTL and implicates novel gene mutations linked to HSTL pathogenesis and potential treatment targets

    Removal of the Pesticide Pymetrozine from Aqueous Solution by Biochar Produced from Brewer's Spent Grain at Different Pyrolytic Temperatures

    No full text
    Biochar (BC) produced from brewer's spent grain (BSG) via slow pyrolysis at 300, 400, 500, 600, and 700 °C was characterized and investigated as an adsorbent for the removal of the pesticide pymetrozine from aqueous solution. Batch BSG BCs adsorption experiments were carried out under various conditions (such as pH, pymetrozine concentration, and BC dosage) to adsorb the pymetrozine. The BSG BCs adsorption pymetrozine capacities were increased by 21.4% to 55.5% under pyrolysis temperatures of 300, 400, 500, and 600 °C compared to 700 °C with a pyrolysis time of 2 h and by 19.0% to 52.1% at 4 h. At solution pH values of 2, 4, 6, and 8, the adsorption capacities were increased by 9.6% to 39.5% compared with that at pH 10. A similar adsorption tendency was found for the different BCs dosage. In the first 60 min, BC absorbed 70% to 80% pymetrozine. The Langmuir and Freundlich model were highly correlated with BC adsorption. The magnitude of free energy decreased by 32.2% to 47.3% with increasing temperature. The value of the enthalpy change showed the adsorption to be endothermic. The BSG BC had high efficiency in adsorbing pymetrozine and had great potential to prevent the water pollution and reuse the waste of the beer factory
    • …
    corecore