5 research outputs found

    Resistive Plate Chambers for Precise Measurement of High-Momentum Protons in Short Range Correlations at R3^3B

    Get PDF
    The Reactions with Relativistic Radioactive Beams (R3^3B) collaboration of the Facility for Antiproton and Ion Research (FAIR) in Darmstadt, Germany, has constructed an experimental setup to perform fundamental studies of nuclear matter, using as a probe reactions with exotic nuclei at relativistic energies. Among the various detection systems, one of the most recent upgrades consisted on the installation of a large area, around 2 m2^2, multi-gap Resistive Plate Chamber (RPC), equipped with twelve 0.3 mm gaps and readout by 30 mm pitch strips, exhibiting a timing precision down to 50 ps and efficiencies above 98% for MIPs in a previous characterization of the detector. The RPC was part of the setup of the FAIR Phase 0 experiment that focused on measuring, for the first time, nucleon-nucleon short-range correlations (SRC) inside an exotic nucleus (16^{16}C) that occurred in Spring 2022. The excellent timing precision of this detector will allow the measurement of the forward emitted proton momentum with a resolution of around 1%. In beam measurements show an RPC efficiency above 95% and a time precision better than 100 ps (including the contribution of a reference scintillator and the momentum spread of the particles) for forward emitted particles

    Suppression of Coulomb-nuclear interference in the near-barrier elastic scattering of 17 Ne from 208 Pb

    Get PDF
    The proton drip-line nucleus 17Ne is considered a good candidate for a Borromean two-proton halo with a 15O + p+ pstructure. Angular distributions of the elastic scattering and inclusive 15O production for a 136 MeV 17Ne beam incident on a 208Pb target were measured for the first time at the SPIRAL1 facility, GANIL. Use of the GLORIA detector array allowed high-resolution data over a wide angular range from 20◦up to 95◦in the laboratory frame to be obtained. The elastic scattering angular distribution shows similarities with those for both 6He and 20Ne at equivalent collision energies with respect to the corresponding Coulomb barriers, exhibiting the suppression of the Coulomb rainbow peak characteristic of strong coupling. Optical model and coupled channel fits suggest that this is due to a combination of coupling to low-lying quadrupole resonances and Coulomb dipole coupling to the low-lying continuum, although their relative importance depends on the relevant B(E2)values which remain to be firmly determined

    Resistive Plate Chambers for Precise Measurement of High-Momentum Protons in Short Range Correlations at R3^3B

    No full text
    The Reactions with Relativistic Radioactive Beams (R3^3B) collaboration of the Facility for Antiproton and Ion Research (FAIR) in Darmstadt, Germany, has constructed an experimental setup to perform fundamental studies of nuclear matter, using as a probe reactions with exotic nuclei at relativistic energies. Among the various detection systems, one of the most recent upgrades consisted on the installation of a large area, around 2 m2^2, multi-gap Resistive Plate Chamber (RPC), equipped with twelve 0.3 mm gaps and readout by 30 mm pitch strips, exhibiting a timing precision down to 50 ps and efficiencies above 98% for MIPs in a previous characterization of the detector. The RPC was part of the setup of the FAIR Phase 0 experiment that focused on measuring, for the first time, nucleon-nucleon short-range correlations (SRC) inside an exotic nucleus (16^{16}C) that occurred in Spring 2022. The excellent timing precision of this detector will allow the measurement of the forward emitted proton momentum with a resolution of around 1%. In beam measurements show an RPC efficiency above 95% and a time precision better than 100 ps (including the contribution of a reference scintillator and the momentum spread of the particles) for forward emitted particles

    Suppression of Coulomb-nuclear interference in the near-barrier elastic scattering of 17Ne from 208Pb

    No full text
    The proton drip-line nucleus 17Ne is considered a good candidate for a Borromean two-proton halo with a 15O + p + p structure. Angular distributions of the elastic scattering and inclusive 15O production for a 136 MeV 17Ne beam incident on a 208Pb target were measured for the first time at the SPIRAL1 facility, GANIL. Use of the GLORIA detector array allowed high-resolution data over a wide angular range from 20∘ up to 95∘ in the laboratory frame to be obtained. The elastic scattering angular distribution shows similarities with those for both 6He and 20Ne at equivalent collision energies with respect to the corresponding Coulomb barriers, exhibiting the suppression of the Coulomb rainbow peak characteristic of strong coupling. Optical model and coupled channel fits suggest that this is due to a combination of coupling to low-lying quadrupole resonances and Coulomb dipole coupling to the low-lying continuum, although their relative importance depends on the relevant B(E2) values which remain to be firmly determined

    A new Time-of-flight detector for the R 3 B setup

    No full text
    © 2022, The Author(s).We present the design, prototype developments and test results of the new time-of-flight detector (ToFD) which is part of the R3B experimental setup at GSI and FAIR, Darmstadt, Germany. The ToFD detector is able to detect heavy-ion residues of all charges at relativistic energies with a relative energy precision σΔE/ ΔE of up to 1% and a time precision of up to 14 ps (sigma). Together with an elaborate particle-tracking system, the full identification of relativistic ions from hydrogen up to uranium in mass and nuclear charge is possible.11Nsciescopu
    corecore