662 research outputs found

    Inhibitory effect of Herba Epimedii extract on bone turn-over of ovariectomized rats

    Get PDF
    2005-2006 > Academic research: refereed > Publication in refereed journalVersion of RecordPublishe

    Bone-protective effects of bioactive fractions and ingredients in Sambucus williamsii HANCE

    Get PDF
    2011-2012 > Academic research: refereed > Publication in refereed journalVersion of RecordPublishe

    A study of Pt4+ -adsorption and its reduction by Bacillus megaterium D01

    Get PDF
    The properties of Pt4+-adsorption and its reduction by Bacillus megaterium D01 were studied by means of ICP, anode-stripping voltammetry, TEM, IR and XPS. The results of ICP analyses showed that the Pt4+-adsorptive efficiency of the strain D01 was as high as 94.3% under the conditions of 100 mg Pt4+/L, 1 g biomass/L, pH 3.5 and at 30 degreesC for 24 h. Moreover, it was confirmed from anode stripping voltammetry that the strain D01 possessed a strong reducibility. The TEM analysis indicated that the strain D01 was able to adsorb and reduce Pt4+ to Pt-0, small particles. The XPS result further supported the reduction of Pt4+ to Pt2+, followed by the further recuction to Pt-0. The IR spectrum implied that D01 biomass adsorption of Pt4+ may result in the complexation of the C = O bond to the Pt species

    Broadband random optoelectronic oscillator

    Full text link
    [EN] Random scattering of light in transmission media has attracted a great deal of attention in the field of photonics over the past few decades. An optoelectronic oscillator (OEO) is a microwave photonic system offering unbeatable features for the generation of microwave oscillations with ultra-low phase noise. Here, we combine the unique features of random scattering and OEO technologies by proposing an OEO structure based on random distributed feedback. Thanks to the random distribution of Rayleigh scattering caused by inhomogeneities within the glass structure of the fiber, we demonstrate the generation of ultra-wideband (up to 40¿GHz from DC) random microwave signals in an open cavity OEO. The generated signals enjoy random characteristics, and their frequencies are not limited by a fixed cavity length figure. The proposed device has potential in many fields such as random bit generation, radar systems, electronic interference and countermeasures, and telecommunications.Thanks N. Shi and Y. Yang for comments and discussion. This work was supported by the National Key Research and Development Program of China under 2018YFB2201902 and the National Natural Science Foundation of China under 61925505. This work was also partly supported by the National Key Research and Development Program of China under 2018YFB2201901, 2018YFB2201903, and the National Natural Science Foundation of China under 61535012 and 61705217.Ge, Z.; Hao, T.; Capmany Francoy, J.; Li, W.; Zhu, N.; Li, M. (2020). Broadband random optoelectronic oscillator. Nature Communications. 11(1):1-8. https://doi.org/10.1038/s41467-020-19596-xS18111Feng, S., Kane, C., Lee, P. A. & Stone, A. D. Correlations and fluctuations of coherent wave transmission through disordered media. Phys. Rev. Lett. 61, 834 (1988).Wiersma, D. S. & Cavalieri, S. Light emission: a temperature-tunable random laser. Nature 414, 708 (2001).Wiersma, D. S. The physics and applications of random lasers. Nat. Phys. 4, 359 (2008).Turitsyn, S. K. et al. Random distributed feedback fibre laser. Nat. Photonics 4, 231–235 (2010).Babin, S. A., El-Taher, A. E., Harper, P., Podivilov, E. V. & Turitsyn, S. K. Tunable random fiber laser. Phys. Rev. A 84, 021805 (2011).Turitsyn, S. K. et al. Random distributed feedback fibre lasers. Phys. Rep. 542, 133–193 (2014).Barnoski, M., Rourke, M., Jensen, S. M. & Melville, R. T. Optical time domain reflectometer. Appl. Opt. 16, 2375–2379 (1977).Yao, X. S. & Maleki, L. Optoelectronic microwave oscillator. JOSA B 13, 1725–1735 (1996).Maleki, L. Sources: the optoelectronic oscillator. Nat. Photonics 5, 728 (2011).Yao, X. S. & Maleki, L. Multiloop optoelectronic oscillator. IEEE J. Quantum Electron 36, 79–84 (2000).Hao, T. et al. Breaking the limitation of mode building time in an optoelectronic oscillator. Nat. Commun. 9, 1839 (2018).Zhang, W. & Yao, J. Silicon photonic integrated optoelectronic oscillator for frequency-tunable microwave generation. J. Lightwave Technol. 36, 4655–4663 (2018).Hao, T. et al. Toward Monolithic Integration of OEOs: from systems to chips. J. Lightwave Technol. 36, 4565–4582 (2018).Zhang, J. & Yao, J. Parity-time–symmetric optoelectronic oscillator. Sci. Adv. 4, eaar6782 (2018).Liu, Y. et al. Observation of parity-time symmetry in microwave photonics. Light Sci. Appl. 7, 38 (2018).Nakazawa, M. Rayleigh backscattering theory for single-mode optical fibers. JOSA 73, 1175–1180 (1983).Hartog, A. & Gold, M. On the theory of backscattering in single-mode optical fibers. J. Lightwave Technol. 2, 76–82 (1984).Eickhoff, W., & Ulrich, R. Statistics of backscattering in single-mode fiber. In Optical Fiber Communication Conference. Optical Society of America (1981).Alekseev, A. E., Tezadov, Y. A. & Potapov, V. T. Statistical properties of backscattered semiconductor laser radiation with different degrees of coherence. Quantum Electron 42, 76–81 (2012).Gysel, P. & Staubli, R. K. Statistical properties of Rayleigh backscattering in single-mode fibers. J. Lightwave Technol. 8, 561–567 (1990).Staubli, R. K. & Gysel, P. Statistical properties of single-mode fiber rayleigh backscattered intensity and resulting detector current. IEEE Trans. Commun. 40, 1091–1097 (1992).Levy, E. C., Horowitz, M. & Menyuk, C. R. Modeling optoelectronic oscillators. JOSA B 26, 148–159 (2009).Yariv, A. Introduction to Optical Electronics 2nd edn. (Holt, Rinehart and Winston, New York, 1976).Aoki, Y., Tajima, K. & Mito, I. Input power limits of single-mode optical fibers due to stimulated Brillouin scattering in optical communication systems. J. Lightwave Technol. 6, 710–719 (1988).Song, H. J., Shimizu, N., Kukutsu, N., Nagatsuma, T. & Kado, Y. Microwave photonic noise source from microwave to sub-terahertz wave bands and its applications to noise characterization. IEEE Trans. Microw. Theory Tech. 56, 2989–2997 (2008).Chembo, Y. K., et al. Optoelectronic oscillators with time-delayed feedback. Rev. Mod. Phys. 91, 035006 (2019).Callan, K. E. et al. Broadband chaos generated by an optoelectronic oscillator. Phys. Rev. Lett. 104, 113901 (2010).Lavrov, R. et al. Electro-optic delay oscillator with nonlocal nonlinearity: Optical phase dynamics, chaos, and synchronization. Phys. Rev. E. 80, 026207 (2009).Wolf, A., Swift, J. B., Swinney, H. L. & Vastano, J. A. Determining Lyapunov exponents from a time series. Phys. D. 16, 285–317 (1985).Grassberger, P. & Procaccia, I. Characterization of strange attractors. Phys. Rev. Lett. 50, 346 (1983).Grassberger, P. & Procaccia, I. Measuring the strangeness of strange attractors. Phys. D. 9, 189–208 (1983).Romeira, B. et al. Broadband chaotic signals and breather oscillations in an optoelectronic oscillator incorporating a microwave photonic filter. J. Lightwave Technol. 32, 3933–3942 (2014)

    Total flavonoid fraction of the Herba epimedii extract suppresses urinary calcium excretion and improves bone properties in ovariectomised mice

    Get PDF
    2010-2011 > Academic research: refereed > Publication in refereed journalVersion of RecordPublishe

    Antikaon production in nucleon-nucleon reactions near threshold

    Get PDF
    The antikaon production cross section from nucleon-nucleon reactions near threshold is studied in a meson exchange model. We include both pion and kaon exchange, but neglect the interference between the amplitudes. In case of pion exchange the antikaon production cross section can be expressed in terms of the antikaon production cross section from a pion-nucleon interaction, which we take from the experimental data if available. Otherwise, a KK^*-resonance exchange model is introduced to relate the different reaction cross sections. In case of kaon exchange the antikaon production cross section is related to the elastic KNKN and KˉN\bar KN cross sections, which are again taken from experimental measurements. We find that the one-meson exchange model gives a satisfactory fit to the available data for the NNNNKKˉNN\to NNK\bar K cross section at high energies. We compare our predictions for the cross section near threshold with an earlier empirical parameterization and that from phase space models.Comment: 16 pages, LaTeX, 5 postscript figures included, submitted to Z. Phys.

    Ant-based Neural Topology Search (ANTS) for Optimizing Recurrent Networks

    Get PDF
    Hand-crafting effective and efficient structures for recurrent neural networks (RNNs) is a difficult, expensive, and time-consuming process. To address this challenge, we propose a novel neuro-evolution algorithm based on ant colony optimization (ACO), called Ant-based Neural Topology Search (ANTS), for directly optimizing RNN topologies. The procedure selects from multiple modern recurrent cell types such as ∆-RNN, GRU, LSTM, MGU and UGRNN cells, as well as recurrent connections which may span multiple layers and/or steps of time. In order to introduce an inductive bias that encourages the formation of sparser synaptic connectivity patterns, we investigate several variations of the core algorithm. We do so primarily by formulating different functions that drive the underlying pheromone simulation process (which mimic L1 and L2 regularization in standard machine learning) as well as by introducing ant agents with specialized roles (inspired by how real ant colonies operate), i.e., explorer ants that construct the initial feed forward structure and social ants which select nodes from the feed forward connections to subsequently craft recurrent memory structures. We also incorporate communal intelligence, where best weights are shared by the ant colony for weight initialization, reducing the number of backpropagation epochs required to locally train candidate RNNs, speeding up the neuro-evolution process. Our results demonstrate that the sparser RNNs evolved by ANTS significantly outperform traditional one and two layer architectures consisting of modern memory cells, as well as the well-known NEAT algorithm. Furthermore, we improve upon prior state-of-the-art results on the time series dataset utilized in our experiments

    A practical guide to photoacoustic tomography in the life sciences

    Get PDF
    The life sciences can benefit greatly from imaging technologies that connect microscopic discoveries with macroscopic observations. One technology uniquely positioned to provide such benefits is photoacoustic tomography (PAT), a sensitive modality for imaging optical absorption contrast over a range of spatial scales at high speed. In PAT, endogenous contrast reveals a tissue's anatomical, functional, metabolic, and histologic properties, and exogenous contrast provides molecular and cellular specificity. The spatial scale of PAT covers organelles, cells, tissues, organs, and small animals. Consequently, PAT is complementary to other imaging modalities in contrast mechanism, penetration, spatial resolution, and temporal resolution. We review the fundamentals of PAT and provide practical guidelines for matching PAT systems with research needs. We also summarize the most promising biomedical applications of PAT, discuss related challenges, and envision PAT's potential to lead to further breakthroughs
    corecore