Abstract

[EN] Random scattering of light in transmission media has attracted a great deal of attention in the field of photonics over the past few decades. An optoelectronic oscillator (OEO) is a microwave photonic system offering unbeatable features for the generation of microwave oscillations with ultra-low phase noise. Here, we combine the unique features of random scattering and OEO technologies by proposing an OEO structure based on random distributed feedback. Thanks to the random distribution of Rayleigh scattering caused by inhomogeneities within the glass structure of the fiber, we demonstrate the generation of ultra-wideband (up to 40¿GHz from DC) random microwave signals in an open cavity OEO. The generated signals enjoy random characteristics, and their frequencies are not limited by a fixed cavity length figure. The proposed device has potential in many fields such as random bit generation, radar systems, electronic interference and countermeasures, and telecommunications.Thanks N. Shi and Y. Yang for comments and discussion. This work was supported by the National Key Research and Development Program of China under 2018YFB2201902 and the National Natural Science Foundation of China under 61925505. This work was also partly supported by the National Key Research and Development Program of China under 2018YFB2201901, 2018YFB2201903, and the National Natural Science Foundation of China under 61535012 and 61705217.Ge, Z.; Hao, T.; Capmany Francoy, J.; Li, W.; Zhu, N.; Li, M. (2020). Broadband random optoelectronic oscillator. Nature Communications. 11(1):1-8. https://doi.org/10.1038/s41467-020-19596-xS18111Feng, S., Kane, C., Lee, P. A. & Stone, A. D. Correlations and fluctuations of coherent wave transmission through disordered media. Phys. Rev. Lett. 61, 834 (1988).Wiersma, D. S. & Cavalieri, S. Light emission: a temperature-tunable random laser. Nature 414, 708 (2001).Wiersma, D. S. The physics and applications of random lasers. Nat. Phys. 4, 359 (2008).Turitsyn, S. K. et al. Random distributed feedback fibre laser. Nat. Photonics 4, 231–235 (2010).Babin, S. A., El-Taher, A. E., Harper, P., Podivilov, E. V. & Turitsyn, S. K. Tunable random fiber laser. Phys. Rev. A 84, 021805 (2011).Turitsyn, S. K. et al. Random distributed feedback fibre lasers. Phys. Rep. 542, 133–193 (2014).Barnoski, M., Rourke, M., Jensen, S. M. & Melville, R. T. Optical time domain reflectometer. Appl. Opt. 16, 2375–2379 (1977).Yao, X. S. & Maleki, L. Optoelectronic microwave oscillator. JOSA B 13, 1725–1735 (1996).Maleki, L. Sources: the optoelectronic oscillator. Nat. Photonics 5, 728 (2011).Yao, X. S. & Maleki, L. Multiloop optoelectronic oscillator. IEEE J. Quantum Electron 36, 79–84 (2000).Hao, T. et al. Breaking the limitation of mode building time in an optoelectronic oscillator. Nat. Commun. 9, 1839 (2018).Zhang, W. & Yao, J. Silicon photonic integrated optoelectronic oscillator for frequency-tunable microwave generation. J. Lightwave Technol. 36, 4655–4663 (2018).Hao, T. et al. Toward Monolithic Integration of OEOs: from systems to chips. J. Lightwave Technol. 36, 4565–4582 (2018).Zhang, J. & Yao, J. Parity-time–symmetric optoelectronic oscillator. Sci. Adv. 4, eaar6782 (2018).Liu, Y. et al. Observation of parity-time symmetry in microwave photonics. Light Sci. Appl. 7, 38 (2018).Nakazawa, M. Rayleigh backscattering theory for single-mode optical fibers. JOSA 73, 1175–1180 (1983).Hartog, A. & Gold, M. On the theory of backscattering in single-mode optical fibers. J. Lightwave Technol. 2, 76–82 (1984).Eickhoff, W., & Ulrich, R. Statistics of backscattering in single-mode fiber. In Optical Fiber Communication Conference. Optical Society of America (1981).Alekseev, A. E., Tezadov, Y. A. & Potapov, V. T. Statistical properties of backscattered semiconductor laser radiation with different degrees of coherence. Quantum Electron 42, 76–81 (2012).Gysel, P. & Staubli, R. K. Statistical properties of Rayleigh backscattering in single-mode fibers. J. Lightwave Technol. 8, 561–567 (1990).Staubli, R. K. & Gysel, P. Statistical properties of single-mode fiber rayleigh backscattered intensity and resulting detector current. IEEE Trans. Commun. 40, 1091–1097 (1992).Levy, E. C., Horowitz, M. & Menyuk, C. R. Modeling optoelectronic oscillators. JOSA B 26, 148–159 (2009).Yariv, A. Introduction to Optical Electronics 2nd edn. (Holt, Rinehart and Winston, New York, 1976).Aoki, Y., Tajima, K. & Mito, I. Input power limits of single-mode optical fibers due to stimulated Brillouin scattering in optical communication systems. J. Lightwave Technol. 6, 710–719 (1988).Song, H. J., Shimizu, N., Kukutsu, N., Nagatsuma, T. & Kado, Y. Microwave photonic noise source from microwave to sub-terahertz wave bands and its applications to noise characterization. IEEE Trans. Microw. Theory Tech. 56, 2989–2997 (2008).Chembo, Y. K., et al. Optoelectronic oscillators with time-delayed feedback. Rev. Mod. Phys. 91, 035006 (2019).Callan, K. E. et al. Broadband chaos generated by an optoelectronic oscillator. Phys. Rev. Lett. 104, 113901 (2010).Lavrov, R. et al. Electro-optic delay oscillator with nonlocal nonlinearity: Optical phase dynamics, chaos, and synchronization. Phys. Rev. E. 80, 026207 (2009).Wolf, A., Swift, J. B., Swinney, H. L. & Vastano, J. A. Determining Lyapunov exponents from a time series. Phys. D. 16, 285–317 (1985).Grassberger, P. & Procaccia, I. Characterization of strange attractors. Phys. Rev. Lett. 50, 346 (1983).Grassberger, P. & Procaccia, I. Measuring the strangeness of strange attractors. Phys. D. 9, 189–208 (1983).Romeira, B. et al. Broadband chaotic signals and breather oscillations in an optoelectronic oscillator incorporating a microwave photonic filter. J. Lightwave Technol. 32, 3933–3942 (2014)

    Similar works