345 research outputs found

    Urban energy consumption and CO2 emissions in Beijing: current and future

    Get PDF
    This paper calculates the energy consumption and CO2 emissions of Beijing over 2005–2011 in light of the Beijing’s energy balance table and the carbon emission coefficients of IPCC. Furthermore, based on a series of energy conservation planning program issued in Beijing, the Long-range Energy Alternatives Planning System (LEAP)-BJ model is developed to study the energy consumption and CO2 emissions of Beijing’s six end-use sectors and the energy conversion sector over 2012–2030 under the BAU scenario and POL scenario. Some results are found in this research: (1) During 2005–2011, the energy consumption kept increasing, while the total CO2 emissions fluctuated obviously in 2008 and 2011. The energy structure and the industrial structure have been optimized to a certain extent. (2) If the policies are completely implemented, the POL scenario is projected to save 21.36 and 35.37 % of the total energy consumption and CO2 emissions than the BAU scenario during 2012 and 2030. (3) The POL scenario presents a more optimized energy structure compared with the BAU scenario, with the decrease of coal consumption and the increase of natural gas consumption. (4) The commerce and service sector and the energy conversion sector will become the largest contributor to energy consumption and CO2 emissions, respectively. The transport sector and the industrial sector are the two most potential sectors in energy savings and carbon reduction. In terms of subscenarios, the energy conservation in transport (TEC) is the most effective one. (5) The macroparameters, such as the GDP growth rate and the industrial structure, have great influence on the urban energy consumption and carbon emissions

    Purification and bioactivity of exendin-4, a peptide analogue of GLP-1, expressed in Pichia pastoris

    Get PDF
    Exendin-4, a peptide analogue of glucagon-like peptide-1 (GLP-1), has been developed for treatment of type 2 diabetes. Herein, the secretive exendin-4 fusion protein, expressed by methanol induction in Pichia pastoris system, was purified to homogeneity by chromatography followed by enterokinase cleavage of the fusion protein and subsequent purification of the recombinant exendin-4. Purity of the recombinant exendin-4 was 95.6%. Bioactivity assay revealed that it had glucose-lowering and insulin-releasing action in vivo

    Ptenb Mediates Gastrulation Cell Movements via Cdc42/AKT1 in Zebrafish

    Get PDF
    Phosphatidylinositol 3-kinase (PI3 kinase) mediates gastrulation cell migration in zebrafish via its regulation of PIP2/PIP3 balance. Although PI3 kinase counter enzyme PTEN has also been reported to be essential for gastrulation, its role in zebrafish gastrulation has been controversial due to the lack of gastrulation defects in pten-null mutants. To clarify this issue, we knocked down a pten isoform, ptenb by using anti-sense morpholino oligos (MOs) in zebrafish embryos and found that ptenb MOs inhibit convergent extension by affecting cell motility and protrusion during gastrulation. The ptenb MO-induced convergence defect could be rescued by a PI3-kinase inhibitor, LY294002 and by overexpressing dominant negative Cdc42. Overexpression of human constitutively active akt1 showed similar convergent extension defects in zebrafish embryos. We also observed a clear enhancement of actin polymerization in ptenb morphants under cofocal microscopy and in actin polymerization assay. These results suggest that Ptenb by antagonizing PI3 kinase and its downstream Akt1 and Cdc42 to regulate actin polymerization that is critical for proper cell motility and migration control during gastrulation in zebrafish

    Mutations of PIK3CA in gastric adenocarcinoma

    Get PDF
    BACKGROUND: Activation of the phosphatidylinositol 3-kinase (PI3K) through mutational inactivation of PTEN tumour suppressor gene is common in diverse cancer types, but rarely reported in gastric cancer. Recently, mutations in PIK3CA, which encodes the p110α catalytic subunit of PI3K, have been identified in various human cancers, including 3 of 12 gastric cancers. Eighty percent of these reported mutations clustered within 2 regions involving the helical and kinase domains. In vitro study on one of the "hot-spot" mutants has demonstrated it as an activating mutation. METHODS: Based on these data, we initiated PIK3CA mutation screening in 94 human gastric cancers by direct sequencing of the gene regions in which 80% of all the known PIK3CA mutations were found. We also examined PIK3CA expression level by extracting data from the previous large-scale gene expression profiling study. Using Significance Analysis of Microarrays (SAM), we further searched for genes that show correlating expression with PIK3CA. RESULTS: We have identified PIK3CA mutations in 4 cases (4.3%), all involving the previously reported hotspots. Among these 4 cases, 3 tumours demonstrated microsatellite instability and 2 tumours harboured concurrent KRAS mutation. Data extracted from microarray studies showed an increased expression of PIK3CA in gastric cancers when compared with the non-neoplastic gastric mucosae (p < 0.001). SAM further identified 2910 genes whose expression levels were positively associated with that of PIK3CA. CONCLUSION: Our data suggested that activation of the PI3K signalling pathway in gastric cancer may be achieved through up-regulation or mutation of PIK3CA, in which the latter may be a consequence of mismatch repair deficiency

    Linking species concepts to natural product discovery in the post-genomic era

    Get PDF
    A widely accepted species concept for bacteria has yet to be established. As a result, species designations are inconsistently applied and tied to what can be considered arbitrary metrics. Increasing access to DNA sequence data and clear evidence that bacterial genomes are dynamic entities that include large numbers of horizontally acquired genes have added a new level of insight to the ongoing species concept debate. Despite uncertainties over how to apply species concepts to bacteria, there is clear evidence that sequence-based approaches can be used to resolve cohesive groups that maintain the properties of species. This cohesion is clearly evidenced in the genus Salinispora, where three species have been discerned despite very close relationships based on 16S rRNA sequence analysis. The major phenotypic differences among the three species are associated with secondary metabolite production, which occurs in species-specific patterns. These patterns are maintained on a global basis and provide evidence that secondary metabolites have important ecological functions. These patterns also suggest that an effective strategy for natural product discovery is to target the cultivation of new Salinispora taxa. Alternatively, bioinformatic analyses of biosynthetic genes provide opportunities to predict secondary metabolite novelty and reduce the redundant isolation of well-known metabolites. Although much remains to be learned about the evolutionary relationships among bacteria and how fundamental units of diversity can be resolved, genus and species descriptions remain the most effective method of scientific communication

    Notch signaling contributes to the maintenance of both normal neural stem cells and patient-derived glioma stem cells

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Cancer stem cells (CSCs) play an important role in the development and recurrence of malignant tumors including glioma. Notch signaling, an evolutionarily conserved pathway mediating direct cell-cell interaction, has been shown to regulate neural stem cells (NSCs) and glioma stem cells (GSCs) in normal neurogenesis and pathological carcinogenesis, respectively. However, how Notch signaling regulates the proliferation and differentiation of GSCs has not been well elucidated.</p> <p>Methods</p> <p>We isolated and cultivate human GSCs from glioma patient specimens. Then on parallel comparison with NSCs, we inhibited Notch signaling using γ-secretase inhibitors (GSI) and assessed the potential functions of Notch signaling in human GSCs.</p> <p>Results</p> <p>Similar to the GSI-treated NSCs, the number of the primary and secondary tumor spheres from GSI-treated GSCs decreased significantly, suggesting that the proliferation and self-renewal ability of GSI-treated GSCs were attenuated. GSI-treated GSCs showed increased differentiation into mature neural cell types in differentiation medium, similar to GSI-treated NSCs. Next, we found that GSI-treated tumor spheres were composed of more intermediate progenitors instead of CSCs, compared with the controls. Interestingly, although inhibition of Notch signaling decreased the ratio of proliferating NSCs in long term culture, we found that the ratio of G2+M phase-GSCs were almost undisturbed on GSI treatment within 72 h.</p> <p>Conclusions</p> <p>These data indicate that like NSCs, Notch signaling maintains the patient-derived GSCs by promoting their self-renewal and inhibiting their differentiation, and support that Notch signal inhibitor GSI might be a prosperous candidate of the treatment targeting CSCs for gliomas, however, with GSI-resistance at the early stage of GSCs cell cycle.</p

    Evolution of scaling emergence in large-scale spatial epidemic spreading

    Get PDF
    Background: Zipf's law and Heaps' law are two representatives of the scaling concepts, which play a significant role in the study of complexity science. The coexistence of the Zipf's law and the Heaps' law motivates different understandings on the dependence between these two scalings, which is still hardly been clarified. Methodology/Principal Findings: In this article, we observe an evolution process of the scalings: the Zipf's law and the Heaps' law are naturally shaped to coexist at the initial time, while the crossover comes with the emergence of their inconsistency at the larger time before reaching a stable state, where the Heaps' law still exists with the disappearance of strict Zipf's law. Such findings are illustrated with a scenario of large-scale spatial epidemic spreading, and the empirical results of pandemic disease support a universal analysis of the relation between the two laws regardless of the biological details of disease. Employing the United States(U.S.) domestic air transportation and demographic data to construct a metapopulation model for simulating the pandemic spread at the U.S. country level, we uncover that the broad heterogeneity of the infrastructure plays a key role in the evolution of scaling emergence. Conclusions/Significance: The analyses of large-scale spatial epidemic spreading help understand the temporal evolution of scalings, indicating the coexistence of the Zipf's law and the Heaps' law depends on the collective dynamics of epidemic processes, and the heterogeneity of epidemic spread indicates the significance of performing targeted containment strategies at the early time of a pandemic disease.Comment: 24pages, 7figures, accepted by PLoS ON

    Research interests: their dynamics, structures and applications in unifying search and reasoning

    Get PDF
    Most scientific publication information, which may reflects scientists' research interests, is publicly available on the Web. Understanding the characteristics of research interests from previous publications may help to provide better services for scientists in the Web age. In this paper, we introduce some parameters to track the evolution process of research interests, we analyze their structural and dynamic characteristics. According to the observed characteristics of research interests, under the framework of unifying search and reasoning (ReaSearch), we propose interests-based unification of search and reasoning (I-ReaSearch). Under the proposed I-ReaSearch method, we illustrate how research interests can be used to improve literature search on the Web. According to the relationship between an author's own interests and his/her co-authors interests, social group interests are also used to refine the literature search process. Evaluation from both the user satisfaction and the scalability point of view show that the proposed I-ReaSearch method provides a user centered and practical way to problem solving on the Web. The efforts provide some hints and various methods to support personalized search, and can be considered as a step forward user centric knowledge retrieval on the Web. From the standpoint of the Active Media Technology (AMT) on the Wisdom Web, in this paper, the study on the characteristics of research interests is based on complex networks and human dynamics, which can be considered as an effort towards utilizing information physics to discover and explain the phenomena related to research interests of scientists. The application of research interests aims at providing scientific researchers best means and best ends in an active way for literature search on the Web. © 2010 Springer Science+Business Media, LLC

    Amygdala Atrophy and Its Functional Disconnection with the Cortico-Striatal-Pallidal-Thalamic Circuit in Major Depressive Disorder in Females

    Get PDF
    Background Major depressive disorder (MDD) is approximately twice as common in females than males. Furthermore, female patients with MDD tend to manifest comorbid anxiety. Few studies have explored the potential anatomical and functional brain changes associated with MDD in females. Therefore, the purpose of the present study was to investigate the anatomical and functional changes underlying MDD in females, especially within the context of comorbid anxiety. Methods In this study, we recruited antidepressant-free females with MDD (N = 35) and healthy female controls (HC; N = 23). The severity of depression and anxiety were evaluated by the Hamilton Depression Rating Scale (HAM-D) and the Hamilton Anxiety Rating Scale (HAM-A), respectively. Structural and resting-state functional images were acquired on a Siemens 3.0 Tesla scanner. We compared the structural volumetric differences between patients and HC with voxel-based morphometry (VBM) analyses. Seed-based voxel-wise correlative analyses were used to identify abnormal functional connectivity. Regions with structural deficits showed a significant correlation between gray matter (GM) volume and clinical variables that were selected as seeds. Furthermore, voxel-wise functional connectivity analyses were applied to identify the abnormal connectivity relevant to seed in the MDD group. Results Decreased GM volume in patients was observed in the insula, putamen, amygdala, lingual gyrus, and cerebellum. The right amygdala was selected as a seed to perform connectivity analyses, since its GM volume exhibited a significant correlation with the clinical anxiety scores. We detected regions with disrupted connectivity relevant to seed primarily within the cortico-striatal-pallidal-thalamic circuit. Conclusions Amygdaloid atrophy, as well as decreased functional connectivity between the amygdala and the cortico-striatal-pallidal-thalamic circuit, appears to play a role in female MDD, especially in relation to comorbid anxiety
    corecore