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Abstract

Background

Major depressive disorder (MDD) is approximately twice as common in females than males.

Furthermore, female patients with MDD tend to manifest comorbid anxiety. Few studies

have explored the potential anatomical and functional brain changes associated with MDD

in females. Therefore, the purpose of the present study was to investigate the anatomical

and functional changes underlying MDD in females, especially within the context of comor-

bid anxiety.

Methods

In this study, we recruited antidepressant-free females with MDD (N = 35) and healthy female

controls (HC; N = 23). The severity of depression and anxiety were evaluated by the Hamilton

Depression Rating Scale (HAM-D) and the Hamilton Anxiety Rating Scale (HAM-A), respec-

tively. Structural and resting-state functional images were acquired on a Siemens 3.0 Tesla

scanner. We compared the structural volumetric differences between patients and HC with

voxel-based morphometry (VBM) analyses. Seed-based voxel-wise correlative analyses

were used to identify abnormal functional connectivity. Regions with structural deficits

showed a significant correlation between gray matter (GM) volume and clinical variables that

were selected as seeds. Furthermore, voxel-wise functional connectivity analyses were

applied to identify the abnormal connectivity relevant to seed in the MDD group.

Results

Decreased GM volume in patients was observed in the insula, putamen, amygdala, lingual

gyrus, and cerebellum. The right amygdala was selected as a seed to perform connectivity
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analyses, since its GM volume exhibited a significant correlation with the clinical anxiety

scores. We detected regions with disrupted connectivity relevant to seed primarily within the

cortico-striatal-pallidal-thalamic circuit.

Conclusions

Amygdaloid atrophy, as well as decreased functional connectivity between the amygdala

and the cortico-striatal-pallidal-thalamic circuit, appears to play a role in female MDD, espe-

cially in relation to comorbid anxiety.

Introduction

Epidemiological studies have consistently demonstrated gender differences in prevalence rates

of unipolar major depressive disorder (MDD), with females being twice as likely than males to

develop it [1, 2]. The higher prevalence rates is believed to be a consequence of biological vulner-

abilities and stressful environmental factors unique to females [3]. These include, but are not lim-

ited to, female-specific sex hormones, predisposing vulnerabilities to anxiety, and prolonged

fixations on stressful experiences [3]. As a result, females differ from males with respect to symp-

tomatology. Females with MDD, in contrast to males with MDD, are more likely to show anxi-

ety, somatization, psychomotor retardation, and changes in sleep patterns [3]. Whereas much is

known about the clinical aspects of MDD in females, there remains a need to identify the neural

basis of MDD in order to help patients to lead asymptomatic lives.

Recently, researchers have investigated structural and functional neurological differences

between female patients with MDD and healthy controls (HC) to better understand the neuro-

biological mechanisms of MDD [4, 5]. For example, studies of depression-associated brain

abnormalities have highlighted the role of the cortico-striatal-pallidal-thalamic circuit in the

pathophysiology of depression [6]. Further, given that disengaging from negative stimuli is

often a clinical observation in depression, numerous neuroimaging studies have consistently

reported MDD patients displaying attenuated activity during the exposure of negative stimuli

in the prefrontal regions, such as the dorsolateral frontal cortex (DLPFC) and ventrolateral

frontal cortex (VLPFC), which play vital roles in attention switching [7, 8]. As anhedonia is a

notable symptom of MDD (the inability to experience pleasure and non-motivation to engage

in activities usually related to pleasure) [9], it is not surprising that the striatal system is impli-

cated in MDD. Morphological studies have reported decreased GM volume of the caudate in

MDD patients, as well as increased activity of the striatal system in response to negative emo-

tions [10, 11]. In this context, pallidus and thalamus have not received much attention. How-

ever, a post-mortem study has demonstrated that there were significantly more neurons in the

mediodorsal (37%) and anteroventral/anteromedial (26%) thalamic nuclei in subjects with

MDD relative to the non-psychiatric comparison group [12]. Lastly, the limbic system has

received special attention in empirical work for its role in emotion perception and encoding,

social salience of environmental stimuli, anxiety and fear conditioning, and motivational

forces in behavior. Taken together, an abundance of studies on depression have documented

structure, functional activity, and functional connectivity abnormalities within the limbic sys-

tem [13–15].

More recently, resting-state functional connectivity analyses have been used to capture

the interactive level of neural systems when no task is being performed [16, 17]. Seed-based

analyses are frequently applied to resting-state data. The seed-based method is a hypothesis-
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driven approach wherein a seed region is selected as a reference, and the temporal correla-

tions between the seed region and other brain regions are calculated to identify a set of plau-

sible functional connectivity alterations in neuropsychiatric disorders [18]. Given that the

amygdala is commonly identified as the elementary structure related to emotional evalua-

tion, it has been frequently localized as the reference region in neuropsychiatric disorders

studies. Ramasubbu et al selected the amygdala as a seed to investigate altered intrinsic con-

nectivity in MDD patients [19]. Reduced functional connectivity relevant to the amygdala

has been observed in regions including the insula, striatal system, and VLPFC. In addition

to the amygdala, regions such as the hippocampus, insula, putamen, and anterior cingulate

cortex (ACC) have also been localized as reference seeds in previous studies of depression.

For example, Lui et al selected thirteen regions of interest and documented associations

between these regions and mood regulation, specifically identifying the disrupted functional

connectivity between refractory and nonrefractory depression [20].

To identify brain abnormalities of depression in a systemic manner, we combined the

voxel-based morphometry (VBM) and resting-state functional connectivity approach to inves-

tigate structural alterations and potentially disrupted functional connectivity, respectively.

According to evidence from previous neuroimaging studies, we hypothesized that the struc-

tural alterations and disrupted connectivity of depression would be mainly observed in the

cortico-striatal-pallidal-thalamic circuit. Additionally, given that female patients with MDD

tends to show increased anxiety, including higher rates of comorbid anxiety disorders [3], we

further hypothesized that the limbic system (e.g., amygdala, hippocampus) would be impli-

cated in our findings.

Materials and Method

All study procedures were approved by the medical Ethics committee of ZhongDa Hospital,

Southeast University. Prior to obtaining consent, the capacity to provide informed consent for

all potential participants was ascertained by two licensed psychiatrists. After explaining the

study procedures, informed written consent was obtained from all participants. All study pro-

cedures were conducted in strict accordance with the Declaration of Helsinki.

Study sample

A total of 35 antidepressant-free females with MDD (aged 44.54 ± 11.14 years) from the

Department of Psychosomatics and Psychiatry, ZhongDa Hospital, Southeast University and

23 matched HC (aged 39.09 ± 14.35 years) were recruited between March 2012 and December

2014 via community advertisements. Participants were carefully screened in a semi-structured

interview by two trained senior psychiatrists.

Participants in the MDD group were confirmed to meet the DSM-IV criteria for MDD

[21]. The diagnostic procedure included history from the patients and their families; medical,

neurological, and psychiatric examinations were also carefully performed. The severity of

depressive and anxiety symptoms were assessed with the 24-item Hamilton Depression Rating

Scale (HAM-D) and the Hamilton Anxiety Rating Scale (HAM-A), respectively [22, 23].

Female patients were excluded if they met of the following criteria: (1) they were less than 18

years old or greater than 60 years old; (2) another major psychiatric illness was present; (3)

they reported current or long-term smoking, alcohol, or drug dependence; (4) serious physical

ailments, primary neurological illness, organic brain disease (e.g., former stroke, cerebral vas-

cular malformations, epilepsy), or former brain injury; (5) endocrine disorders (e.g., hyperten-

sion, diabetes, thyroid dysfunction); or (6) received antidepressant treatment or psychiatric

therapy within the 6 months prior to their enrollment.

Major Depressive Disorder in Females
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HC were physically healthy, had no history of severe illness, and no first degree relative

with a history of psychiatric illness. Clinical assessments for the control group were conducted

by an experienced psychiatrist in order to verify inclusion and exclusion criteria. Eligible par-

ticipants were required to have a HAM-D score less than 8 points and to have met the exclu-

sion criteria (1) and (3). Further, all participants were right-handed and were required to have

no contraindications for MRI studies.

Data acquisition

Imaging data were acquired on a Siemens 3.0 Tesla scanner with a 12-channel head coil. High-

resolution 3-dimensional T1-weighted 3D scans were recorded in a magnetization prepared

rapid gradient echo (MPRAGE) sequence (TR = 1900ms; TE = 2.48 ms; FA = 90˚; acquisition

matrix = 256 × 256; FOV = 250 × 250 mm2). Whole brain resting-state fMRI data were acquired

using a gradient-recalled echo-planar imaging pulse sequence (TR = 2000 ms; TE = 25ms;

FA = 90˚; acquisition matrix = 64×64; FOV = 240×240 mm2; Total volumes = 240). During the

8-mintue resting-state fMRI scan, participants were instructed to lay still in the scanner, keep

their eyes open, and refrain from falling asleep.

Voxel-based morphometry analysis

VBM analyses were carried out using Statistical Parametric Mapping software (SPM8: Well-

come Trust Centre for Neuroimaging, London, UK) run on Matlab 2014a (Math-Works,

Natick, MA, USA). First, MR images were segmented into gray matter (GM), white matter

(WM), and cerebrospinal fluid (CSF) using the standard unified segmentation module in SPM8

[24]. Second, study-specific GM templates were generated from the entire image dataset using

the Exponentiated Lie algebra (DARTEL) method, an improved VBM method for greater accu-

racy in inter-subject brain registration. Third, after an initial affine registration of the GM DAR-

TEL templates to the corresponding tissue probability maps in the Montreal Neurological

Institute (MNI) space, non-linear warping of GM images were conducted to match the corre-

sponding MNI space GM DARTEL templates. Fourth, images were modulated to ensure that

relative volumes of GM were preserved following the spatial normalization procedure. Lastly,

the modulated, normalized GM images (voxel size 1.5 × 1.5 × 1.5 mm3) were smoothed with an

8-mm full-width at half-maximum Gaussian kernel.

We compared regional GM volume across the two groups (i.e., female patients with MDD

vs female HC) with a two sample t-test after controlling for age. Statistical parametric maps

were generated after multiple comparison analyses (AlphaSim, AFNI, signal voxel threshold of

p< 0.005 and cluster size >396). Female patients with MDD were prone to increased anxiety,

including higher rates of comorbid anxiety disorders. Consequently, we conducted Pearson

correlations between (1) the GM volume of regions with structural deficits, and (2) symptoms

of anxiety as measured by the HAM-A summary score to identify the relationship between

structural abnormalities and clinical symptoms in female with MDD.

Resting-state functional connectivity analysis

Connectivity analyses were performed using SPM8 software and the CONN-fMRI Functional

toolbox [25]. Briefly, the imaging preprocessing steps included slice-time corrections, realign-

ment, coregistration, normalization into the Montreal Neurological Institute (MNI) space,

resampling at 2 mm3, and spatial smoothing with a Gaussian kernel of 8 mm3 full-width at

half maximum. White matter, cerebrospinal fluid (CSF), and motion-relevant parameters

were taken as confounds, following the component-based noise-correction method to mini-

mize non-neural influences on functional MRI (fMRI) signals. The whole brain BOLD signal
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was excluded as a regressor to eliminate erroneous anti-correlations [26]. The residual time-

series were temporally bandpass filtered (0.01–0.08 Hz) to reduce the effect of low and high

frequency physiological noise [27]. Then, Pearson correlations were calculated between the

time course of seed regions and the time course of all other voxels. The resultant correlation

coefficients were converted to normally distributed scores using the Fisher z transformation.

Two-sample t-tests were conducted to compare the functional connectivity between the

two groups (i.e., female patients with MDD vs female HC), controlling for age. Statistical

parametric maps were generated after multiple comparison analysis (AlphaSim, AFNI, signal

voxel threshold of p< 0.01 and cluster size >251). Similar to our VBM analysis, the mean Z-

values of functional connectivity were retrieved from regions with abnormal functional con-

nectivity and were used to compute Pearson correlations with anxiety symptoms as measured

by the HAM-A summary score in the females with MDD group.

Results

Demographic characteristics and clinical symptoms

Demographic and clinical characteristics of female patients with MDD and HC are presented in

Table 1. There were no significant differences between the two groups with respect to age and

years of education. Mean duration of illness was 5.82 months (SD = 2.86) for female MDD.

Voxel-based morphometry analysis

As Fig 1 and Table 2 present, female patients with MDD displayed decreased volume in the

right amygdala, right parahippocampus gyrus (PHIPP), bilateral insula, bilateral putamen, left

lingual gyrus (LING), cerebellum, and caudal middle-frontal region, when compared to the

HC. Regions with structural deficits observed in our study were roughly symmetrical, but

implicated the limbic system to a greater extent in the right hemisphere than in the left. In con-

trast, no significant increase in GM volume was found among female patients with MDD.

As female patients with MDD tended to display elevated anxiety traits, we conducted Pear-

son correlations between anxiety scores and the GM volume of regions showing structural def-

icits. As Fig 1 demonstrates, we detected that the right amygdala with structural deficits

exhibited a significant correlation with anxiety scores in female patients with MDD (r = 0.32,

p<0.035).

Table 1. Demographic and neuropsychological data.

Items Female MDD (N = 35) Healthy Females (N = 23) T value P value

Age (Years) 44.54±11.15 39.09±14.35 1.24 0.11*

Education (Years) 10.4±3.85 12.18±4.58 0.92 0.18*

HAM-D 28.29±7.99 N/A N/A N/A

HAM-A 20.17±7.17 N/A N/A N/A

Age of onset(years) 41.25±10.07 N/A N/A N/A

Total duration(months) 32.17±45.02 N/A N/A N/A

Current duration(months) 5.83±8.22 N/A N/A N/A

Frequency(times) 4.46±10.83 N/A N/A N/A

Family history(N/Y) 30/2 N/A N/A N/A

Note

* P value was calculated by Independent two-sample t-test.

Abbreviation: MDD, major depressive disorder; N, number; HAM-D, Hamilton Depression Rating Scale; HAM-A, Hamilton Anxiety Rating Scale; N/Y, No/

Yes; N/A, not available.

doi:10.1371/journal.pone.0168239.t001
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Resting-state functional connectivity analysis

In following-up analysis on resting-state brain activity, the right amygdala was chosen as the

seed region. Low frequency functional connectivity maps for the whole brain were generated

for each group. As Fig 2 and Table 3 demonstrate, females with MDD displayed attenuated

Fig 1. Regions showing significantly altered GM volume in females with MDD compared to HC. Panel

A shows the regions representing significantly decreased GM volume in females with MDD compared to HC,

including bilateral insula, bilateral amygdala, right hippocampus, bilateral parahippocampus gyrus, bilateral

putamen, bilateral lingual gyrus, cerebellum, and caudal middle frontal regions. In contrast, no significant

increase in GM volume was detected among females with MDD compared to HC. The significance level was

set as single voxel threshold of p<0.005 and cluster size > 396 voxels, using AlphaSim correction. Panel B

shows the right amygdala, with structural deficits, exhibits a significant correlation between GM volume and

anxiety scores in females with MDD (r = 0.32, p = 0.035).

doi:10.1371/journal.pone.0168239.g001

Table 2. The locations of regions showing significantly altered GM volume in females with MDD compared to HC.

Regions MNI Voxel Size T value*

x y z

Female MDD < Females HC

caudal middle frontal regions -4.5 9 64.5 452 -3.66

Left Insula -43.5 -7.5 -3 255 -3.36

Right Insula 39 0 1.5 539 -3.6

Left Putamen -27 6 -9 123 -2.98

Right Putamen 33 0 1.5 580 -3.58

Right Amygdala 24 6 -15 91 -3.41

Right ParahippocampaGyrus 22.5 4.5 -19.5 62 -2.94

Left Lingual -12 -51 -9 232 -3.86

Cerebellum -52.5 6 -58.5 2343 -4.17

Female MDD >Female HC

N/A

*p<0.005, corrected for multiple comparisons using cluster extent thresholding method where the cluster size of 396 voxels was determined using Monte

Carlo simulation (AlphaSim)

doi:10.1371/journal.pone.0168239.t002
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Fig 2. Regions showing significantly altered connectivity with the amygdala in females with MDD

compared to HC. Panel A shows significantly altered connectivity with the amygdala in females with MDD

compared to HC. Panel B shows the statistical maps rendered on a SurfTemplate by using the BrainNet

Viewer (http://www.nitrc.org/projects/bnv); the magenta dot is the seed–the right amygdala; aquamarine dots

indicate the right VLPFC, bilateral insula, bilateral parahippocampus, bilateral putamen, bilateral pallidus, and

bilateral thalamus that displayed significantly decreased connectivity with the amygdala in females with MDD

relative to HC. In contrast, no significant increased functional connectivity relevant to seed was detected

among females with MDD compared to HC. The significance level was set as single voxel threshold of p<0.01

and cluster size > 251 voxels, using AlphaSim correction. Panel C shows significant correlations between

connectivity and anxiety scores; the upper row displays the connectivity of the left pallidus, relevant to the right

amygdala, significantly correlates with anxiety scores (r = 0.52, p = 0.0017); the bottom row displays the

connectivity of the left hippocampus, relevant to the right amygdala, significantly correlates with anxiety

scores (r = 0.36, p = 0.0314).

doi:10.1371/journal.pone.0168239.g002

Table 3. The locations of the regions showing significantly altered connectivity with the amygdala in females with MDD compared to HC.

Regions MNI Cluster Size T value*

x y z

Female MDD < Females HC

Right VLPFC 24 10 22 75 -3.6

Left Insula -36 14 -14 171 -4.01

Right Insula 38 12 -6 181 -4.26

Left Caudate -10 -4 14 64 -2.84

Right Caudate 22 18 14 103 -3.13

Left Putamen -30 6 -4 152 -4.28

Right Putamen 30 6 -10 612 -4.08

Left Pallidus -14 8 2 53 -2.86

Right Pallidus 24 2 -6 83 -2.81

Left Hippocampus -16 -16 -20 57 -3.09

Right Hippocampus 24 -4 -22 67 -3.15

Left Parahippocampa Gyrus -16 -20 -22 87 -3.55

Right Parahippocampa Gyrus 18 -18 -22 159 -2.94

Left Thalamus -2 -12 2 62 -3.10

Right Thalamus 14 -10 2 144 -3.87

Female MDD > Female HC

N/A

*p<0.01, corrected for multiple comparisons using cluster extent thresholding method where the cluster size of 251 voxels was determined using Monte

Carlo simulation (AlphaSim)

doi:10.1371/journal.pone.0168239.t003
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functional connectivity in the VLPFC, bilateral insula, and bilateral putamen compared with

the HC. In contrast, no significant increased functional connectivity relevant to seed (i.e., right

amygdala) was detected in females with MDD.

Additionally, we observed aberrant connectivity of the left hippocampus (Peak MNI coor-

dinate: X = -25; Y = -7; Z = -15; cluster size = 57; r = 0.36; p<0.032) and the left pallidus (Peak

MNI coordinate: X = -18; Y = -6; Z = 8; cluster size = 53; r = 0.52; p<0.002) correlated signifi-

cantly with anxiety scores (Fig 2).

Discussion

The prevalence rates of MDD is one of the most consistent findings demonstrated in epidemi-

ological studies of depression, with MDD being about twice as common in women as in men

[1, 2]. However, the biological mechanism underlying MDD in females is still ambiguous,

especially given its high prevalence of comorbid anxiety. There is growing interest in probing

structural and functional patterns of brain abnormities related to MDD in females [28]. To

our knowledge, this is the first study that combines VBM and resting-state functional connec-

tivity to investigate brain abnormalities in females with MDD, compared to HC. In females

with MDD, we observed structural deficits in the right amygdala, bilateral putamen, caudal

middle-frontal region, LING, and the cerebellum. The right amygdala showed a significant

correlation between decreased GM volume and anxiety scores. As such, we selected it as a seed

region to conduct functional connectivity analyses. Regions with aberrant connectivity had a

large overlap with regions that showed decreased GM volume; the overlapping regions were

primarily constituents of the limbic-striatal circuit. The limbic-striatal circuit, together with

regions that included the VLPFC and bilateral thalamus (i.e., regions that emerged specifically

in the statistical map of aberrant connectivity), further corroborated previous findings that the

cortico-striatal-pallidal-thalamic loop is strongly implicated in depression.

In support of our findings, previous neuroimaging studies have also demonstrated that

females with MDD displayed significantly decreased GM volume in the amygdala, caudate, and

insula [10, 29, 30]. A recent study combined thickness and VBM analyses to explore potential

morphological abnormities of females with MDD and high-risk females [31]. Consistent with

our results, the authors found that females with MDD exhibited reduced thickness in the caudal

middle-frontal region compared to HC. The caudal part of the middle-frontal regions corre-

sponds to the premotor region, which plays a pivotal role in task switching, especially in proac-

tive behavioral switching [32]. The cerebellum, another region that manifested structural

deficits in females with MDD, plays a vital role in motor coordination and motor behavior, as

well as emotional processing. Several lines of evidence suggest that the cerebellum is involved in

the pathology of depression, including structural abnormalities and irregular activation patterns

during the resting-state, as well as dysfunction during cognitive and emotional tasks [33–35].

Moreover, convergent evidence from therapeutics, neuroimaging, and lesion studies sug-

gests that amygdala disturbance is implicated in the pathophysiology of depressive illness [13,

36, 37]. Our finding of decreased GM volume in the amygdala of females with MDD further

supports the critical role of the amygdala in the etiology of depression. Importantly, based on

the initial structural deficit observed in the amygdala, we conducted an additional analysis of

its resting-state co-activation with other functionally relevant regions by using the amygdala as

a seed region. The purpose of this functional connectivity analysis was to test an amygdala-

centered abnormal coupling pattern in females with MDD.

Similar to the amygdala, the hippocampus is also a critical component of the limbic system.

It is involved in emotional memory, as well as the etiology and persistence of depressive symp-

toms, such as anxiety [38, 39]. We speculate that the attenuated connectivity between the
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hippocampus and the right amygdala in females with MDD, compared to HC, may be related

to a deficit in the encoding and retrieval of emotional memories in females with MDD. This

possibility is further corroborated by statistically significant correlations observed between

connectivity strength and HAM-A scores.

Within the prefrontal lobe, we observed attenuated connectivity between the right VLPFC

and the right amygdala in females with MDD (the same circuit believed to be involved in

attention switching). It has been shown that, compared to HC, patients with depression tend

to be attentionally-biased toward negatively-valenced stimuli and are less able to process posi-

tive information [40, 41]. Given the VLPFC’s role in stimulus selection and the amygdala’s

role in emotion regulation, we conjecture that the difficulty patients with MDD have in disen-

gaging from negative stimuli may be related to the attenuated activity we have observed.

Aberrant connectivity between the insula and the amygdala in patients with MDD has also

been reported in neuroimaging studies that use seed-based or ICA methods [15, 42]. The

insula, especially its left anterior part, appears to serve as an integrative hub and to be integral

in the role of switching between brain networks. Conversely, the insula’s posterior (or, right

part) has been implicated in the detection and interpretation of internal bodily states. From

this, we can surmise that the perception and interpretation of internal bodily states (e.g., physi-

ological discomfort such as increased heart rate) share common features with sensitivity to

anxiety. The present findings suggest that the structural deficits in the insula, and the aberrant

connectivity related to the amygdala, are centralized in the insula’s posterior (or, right) region

and that these brain abnormalities may be associated with elevated sensitivity to anxiety

(which is often observed in females with MDD).

It is also worth noting that we found decreased connectivity between striatal systems and

the amygdala in females with MDD, compared with HC, which is consistent with previous

studies on depression [19]. Animal models have also documented that the amygdala has wide-

spread projections of several components of the striatal system, including the caudate and

nucleus accumbens, as well as the putamen [43], which suggests that both the amygdala and

the striatal system contribute to emotional and motivational behavior. Thus, we may suspect

that the decoupling of the amygdala and striatal systems is associated with the anhedonia

observed as a core symptom of MDD. Interestingly, we detected that aberrant connectivity of

the left pallidus (relevant to the right amygdala) significantly correlated with symptoms of anx-

iety. A previous study found that the neural activity of the right amygdala significantly corre-

lated with anhedonia in patients with MDD in response to positively-valenced stimuli [44].

Indeed, it seems intuitively true that high levels of anxiety would be incompatible with pleasur-

able experiences. Additionally, given our finding that the striatal system and amygdala both

manifested structural deficits in females with MDD, it is reasonable to suspect that the struc-

tural deficits provide a potential mechanistic account for projection lesions and, hence, lead to

attenuated coupling in amygdalostriatal circuits.

The thalamus, not just a relay station, but also a highly interactive structure that provides

selection and transformation to different inputs, has recently been subjected to intense scru-

tiny in depression [12, 30, 45]. Our results of attenuated connectivity between the right amyg-

dala with the thalamus in females with MDD, relative to HC, corroborates the convergent

conclusion supported by many researchers that the direct projections from the amygdala to

the dorsal hypothalamic are involved in symptoms of fear and anxiety [46, 47]. Furthermore,

these symptoms were generally more pronounced in females with MDD [3, 48]. Another

dimension to consider of the role of the thalamus in depression is its functional implications

in pain perception and alertness. That is, somatization and sleep-related symptoms commonly

observed in MDD [3] may stem from the hypoconnectivity of the right thalamus observed in

females with MDD [49, 50].
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Taken together, our findings shed light on neural mechanisms underlying the higher inci-

dence rates of MDD in females as compared to males. The present study, benefiting from its

unique focus on a female population, has outlined a set of brain regions with alterations at

both anatomical and functional levels in females with MDD. It has been long suspected that

certain brain abnormalities are responsible for the female predisposition for MDD. Hastings

et al have demonstrated that females with MDD relative to males with MDD, displayed

decreased GM volume in the amygdala [51]. Meanwhile, a recent study of sex-related patterns

of morphological abnormalities has demonstrated that females with MDD had altered GM vol-

ume in the frontal-limbic circuits, suggesting that the frontal-limbic circuits subserve emotions

that are associated with increased depression or anxiety risk in females [30]. Empirical evi-

dence has pointed to links between sex and clinical manifestation of MDD: females with MDD

are prone to display anxiety and comorbid anxiety disorder, whereas males with MDD are

more likely to display impulsiveness [3, 48]. As such, sex is a factor worthy of further consider-

ation. Our study has added new insight into the pathological mechanism of MDD in females.

In contrast to most other published work on this subject, we take advantage of two modalities,

that is, the combined analysis of anatomical and resting-state imaging. By doing so, we have

been able to help identify a female MDD neural bases in brain anatomy and activity.

Limitations

There are several limitations to our study that should be noted. First, the small sample size

may have limited our ability to detect statistical group differences. For example, we did not

detect the disrupted connectivity of the ACC relevant to seed, which has consistently appeared

in other functional connectivity studies. Second, some potential confounding factors, such as

physiological noise (respiratory and cardiac rhythms) and the arousal level of participants dur-

ing resting state scans were not controlled for in our analyses. Third, we used the AlphaSim

correction for multiple comparisons, although options (e.g., FDR, FWE) are also available and

could be used. Fourth, our conclusions were based on an all-female cohort. Any attempt to

generalize our findings to a male population should be made with caution.

Conclusions

Our study applied VBM and resting-state functional connectivity analyses to identify the brain

abnormities of females with MDD at a systemic level. The study suggests that amygdaloid atrophy,

as well as decreased functional connectivity between the amygdala and the cortico-striatal-palli-

dal-thalamic circuit, play an important role in female MDD, especially in relation to comorbid

anxiety. Our study has added new insight into the female-specific pathological mechanism of

MDD, and has emphasized the role of the amygdala in the pathophysiology of MDD in females.
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