1,715 research outputs found
Algorithms for Replica Placement in High-Availability Storage
A new model of causal failure is presented and used to solve a novel replica
placement problem in data centers. The model describes dependencies among
system components as a directed graph. A replica placement is defined as a
subset of vertices in such a graph. A criterion for optimizing replica
placements is formalized and explained. In this work, the optimization goal is
to avoid choosing placements in which a single failure event is likely to wipe
out multiple replicas. Using this criterion, a fast algorithm is given for the
scenario in which the dependency model is a tree. The main contribution of the
paper is an dynamic programming algorithm for placing
replicas on a tree with vertices. This algorithm exhibits the
interesting property that only two subproblems need to be recursively
considered at each stage. An greedy algorithm is also briefly
reported.Comment: 22 pages, 7 figures, 4 algorithm listing
A Simple Method to Synthesize Cadmium Hydroxide Nanobelts
Cd(OH)2nanobelts have been synthesized in high yield by a convenient polyol method for the first time. XRD, XPS, FESEM, and TEM were used to characterize the product, which revealed that the product consisted of belt-like crystals about 40 nm in thickness and length up to several hundreds of micrometers. Studies found that the viscosity of the solvent has important influence on the morphology of the final products. The optical absorption spectrum indicates that the Cd(OH)2nanobelts have a direct band gap of 4.45 eV
Exploring neurotransmitters and their receptors for breast cancer prevention and treatment
While psychological factors have long been linked to breast cancer pathogenesis and outcomes, accumulating evidence is revealing how the nervous system contributes to breast cancer development, progression, and treatment resistance. Central to the psychological-neurological nexus are interactions between neurotransmitters and their receptors expressed on breast cancer cells and other types of cells in the tumor microenvironment, which activate various intracellular signaling pathways. Importantly, the manipulation of these interactions is emerging as a potential avenue for breast cancer prevention and treatment. However, an important caveat is that the same neurotransmitter can exert multiple and sometimes opposing effects. In addition, certain neurotransmitters can be produced and secreted by non-neuronal cells including breast cancer cells that similarly activate intracellular signaling upon binding to their receptors. In this review we dissect the evidence for the emerging paradigm linking neurotransmitters and their receptors with breast cancer. Foremost, we explore the intricacies of such neurotransmitter-receptor interactions, including those that impinge on other cellular components of the tumor microenvironment, such as endothelial cells and immune cells. Moreover, we discuss findings where clinical agents used to treat neurological and/or psychological disorders have exhibited preventive/therapeutic effects against breast cancer in either associative or pre-clinical studies. Further, we elaborate on the current progress to identify druggable components of the psychological-neurological nexus that can be exploited for the prevention and treatment of breast cancer as well as other tumor types. We also provide our perspectives regarding future challenges in this field where multidisciplinary cooperation is a paramount requirement
Treatment-Related Lymphopenia is Possibly a Marker of Good Prognosis in Nasopharyngeal Carcinoma: a Propensity-Score Matching Analysis
Ke-gui Weng,1,2,* Hai-ke Lei,2,* De-Song Shen,3,* Ying Wang,2 Xiao-Dong Zhu1,4 1Department of Radiation Oncology, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, People’s Republic of China; 2Department of Radiation Oncology, Chongqing University Cancer Hospital, Chongqing, People’s Republic of China; 3Department of Oncology, Liuzhou People’s Hospital Affiliated to Guangxi Medical University, Liuzhou, Guangxi, People’s Republic of China; 4Department of Oncology, Wuming Hospital of Guangxi Medical University, Nanning, Guangxi, People’s Republic of China*These authors contributed equally to this workCorrespondence: Xiao-Dong Zhu, Department of Radiation Oncology, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, 530021, People’s Republic of China, Email [email protected] Ying Wang, Department of Radiation Oncology, Chongqing University Cancer Hospital, Chongqing, 400030, People’s Republic of China, Email [email protected]: The aims of the study were to monitor circulating lymphocyte subset counts before and after therapy for nasopharyngeal carcinoma (NPC), and investigate their relationships with patient outcomes.Patients and Methods: Subjects comprised patients with TNM stage I–IVA NPC who underwent radiotherapy. Peripheral venous blood samples were collected before and after treatment. Lymphocyte subset counts were analyzed by flow cytometry. Differences between post-treatment and baseline counts were calculated to determine Δ values. Patients were divided into high and low groups, based on median lymphocyte subset counts; propensity score matching was applied to balance groups. Progression-free survival (PFS) and overall survival (OS) were plotted using Kaplan-Meier curves and compared using a Log rank test. Relationships between lymphocyte subset counts and patient survival were subjected to Cox regression analysis.Results: Patients with NPC (n=746) were enrolled from 2012– 2022. Higher CD8+ and total T cell baseline counts were associated with better 5-year PFS (73.7% vs 63.1%, P=0.002 and 73.8% vs 64.1%, P=0.005, respectively). Similarly, higher Δ values of CD4+ and total T cells were associated with higher 5-year PFS (76.2% vs 63.5%, P=0.001; 74.3% vs 65.4%, P=0.010) and OS (89.8% vs 81.6%, P=0.005; 88.6% vs 82.5%, P=0.009). Multivariate Cox regression revealed that CD8+ (hazard ratio (HR) 0.651, P=0.002) and total T (HR 0.600, P< 0.001) cells were significantly associated with PFS. CD4+ (HR 0.708, P=0.038) and total T (HR 0.639, P=0.031) cells were independent prognostic factors for OS.Conclusion: NPC patients with low total or CD8+ T cell counts before treatment had worse prognosis; however, those with more significant decreases in total or CD4+ T cells possibly had better outcomes. T cell counts can be reliable indicators to predict prognosis.Keywords: chemoradiotherapy, T cell counts, progression-free survival, overall survival, propensity score matchin
Just when you thought it was safe to go into the membrane: the growing complexities of extra-nuclear progesterone signaling
The diversity of membrane-initiated progesterone actions has made characterization and establishment of its biological importance a complicated endeavor. A new study by Zuo and colleagues shows that progesterone via endogenous membrane progesterone receptor-α acts as a negative regulator of proliferation and epithelial to mesenchymal transition in a breast cancer cell line. These progesterone-mediated actions appear to be regulated through epidermal growth factor receptor and phosphatidylinositol 3-kinase signaling localized in caveolae. Moreover, the study shows expression of membrane progesterone receptor-α in benign and malignant breast cancer tissues. These data bring forth novel concepts with regard to progesterone actions in the breast; however, further work is warranted to fully characterize the physiologic actions of extra-nuclear progesterone signaling in the breast
The tumor suppressor Fat1 is dispensable for normal murine hematopoiesis
Loss and overexpression of FAT1 occurs among different cancers, with these divergent states equated with tumor suppressor and oncogene activity, respectively. Regarding the latter, FAT1 is highly expressed in a high proportion of human acute leukemias relative to normal blood cells, with evidence pointing to an oncogenic role. We hypothesized that this occurrence represents legacy expression of FAT1 in undefined hematopoietic precursor subsets (i.e. sustained following transformation), predicating a role for FAT1 during normal hematopoiesis. We explored this concept by using the Vav-iCre strain to construct conditional knockout mice in which Fat1 expression was deleted at the hematopoietic stem cell stage. Extensive analysis of precursor and mature blood populations using multipanel flow cytometry revealed no ostensible differences between Fat1 conditional knockout mice and normal littermates. Further functional comparisons involving colony-forming unit and competitive bone marrow transplantation assays support the conclusion that Fat1 is dispensable for normal murine hematopoiesis
High pseudocapacitive cobalt carbonate hydroxide films derived from CoAl layered double hydroxides
A thin nanosheet of mesoporous cobalt carbonate hydroxide (MPCCH) has been fabricated from a CoAl-LDH nanosheet following removal of the Al cations by alkali etching. The basic etched electrode exhibits enhanced specific capacitance (1075 F g−1 at 5 mA cm−2) and higher rate capability and cycling stability (92% maintained after 2000 cycles)
Wall roughness induces asymptotic ultimate turbulence
Turbulence is omnipresent in Nature and technology, governing the transport
of heat, mass, and momentum on multiple scales. For real-world applications of
wall-bounded turbulence, the underlying surfaces are virtually always rough;
yet characterizing and understanding the effects of wall roughness for
turbulence remains a challenge, especially for rotating and thermally driven
turbulence. By combining extensive experiments and numerical simulations, here,
taking as example the paradigmatic Taylor-Couette system (the closed flow
between two independently rotating coaxial cylinders), we show how wall
roughness greatly enhances the overall transport properties and the
corresponding scaling exponents. If only one of the walls is rough, we reveal
that the bulk velocity is slaved to the rough side, due to the much stronger
coupling to that wall by the detaching flow structures. If both walls are
rough, the viscosity dependence is thoroughly eliminated in the boundary layers
and we thus achieve asymptotic ultimate turbulence, i.e. the upper limit of
transport, whose existence had been predicted by Robert Kraichnan in 1962
(Phys. Fluids {\bf 5}, 1374 (1962)) and in which the scalings laws can be
extrapolated to arbitrarily large Reynolds numbers
- …