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Abstract
In this paper we study stronger forms of sensitivity for inverse limit dynamical system
which is induced from dynamical system on a compact metric space. We give the
implication of stronger forms of sensitivity between inverse limit dynamical systems
and original systems. More precisely, the inverse limit system is syndetically sensitive
(resp. cofinitely sensitive, ergodically sensitive, multi-sensitive) if and only if original
system is syndetically sensitive (resp. cofinitely sensitive, ergodically sensitive,
multi-sensitive). Also, we prove that the inverse limit system is syndetically transitive if
and only if original system is syndetically transitive.
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1 Introduction
Throughout this paper a topological dynamical system we mean a pair (X, f ), where X is
a compact space and f : X → X is a surjective continuous map. Let N+ denotes the set of
all positive integers and let N = N+ ∪ {}. When X is finite, it is a discrete space and there
is no non-trivial convergence. Hence, we assume that X contains infinitely many points.

It is well known that sensitive dependence on initial conditions characterizes the un-
predictability of chaotic phenomenon (see [–]). Sensitive dependence on initial condi-
tions, or sensitivity for short, is the essential component of various definitions of chaos.
Roughly speaking, a dynamical system (X, f ) is sensitive if for any open region U of the
phase space, there exist two points in U and an integer n ∈ N such that the nth iterates
of the two points under the map f are significantly separated. The largeness of the set of
all n ∈ N where this significant separation or sensitivity happens can be thought of as a
measure of how sensitive the dynamical system is. In particular, if this set is quite thin with
arbitrarily large gaps between consecutive entries, then one has some excuse for treating
the dynamical system as practically non-sensitive!

For continuous self-maps of compact metric spaces, Moothathu [] initiated a prelim-
inary study of stronger forms of sensitivity formulated in terms of large subsets of N . He
considered syndetic sensitivity and cofinite sensitivity. Moreover, he constructed a transi-
tive, sensitive map which is not syndetically sensitive and established the following. () Any
syndetically transitive, non-minimal map is syndetically sensitive (this improves the result
that sensitivity is redundant in Devaney’s definition of chaos). () Any sensitive map of
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[, ] is cofinitely sensitive. () Any sensitive subshift of finite type is cofinitely sensitive.
() Any syndetically transitive, infinite subshift is syndetically sensitive. () No Sturmian
subshift is cofinitely sensitive.

More recently, Sharma and Nagar [] studied the relations between the various forms
of sensitivity of the systems (X, f ) and it induced hyperspace dynamical systems (κ(X), f̄ ).
They proved that all forms of sensitivity of (κ(X), f̄ ) partly imply the same for (X, f ), and
the converse holds in some cases. Li et al. [–] introduced the notion of ergodic sen-
sitivity which is a stronger form of sensitivity, and presented some sufficient conditions
for a dynamical system (X, f ) to be ergodically sensitive. Also, it is shown that (κ(X), f̄ )
is syndetically sensitive (resp. multi-sensitive) if and only if (X, f ) is syndetically sensitive
(resp. multi-sensitive).

Along with the deep research on the properties of topological dynamical systems, many
people also considered dynamical properties in some induced dynamical systems such as
inverse limit dynamical systems. Li [] studied Devaney chaos of inverse limit dynamical
systems and proved that an inverse limit dynamical system is Devaney chaos if and only if
its original system is Devaney chaos. Chen and Li [] discussed shadowing property for
inverse limit spaces, Ye [] studied topological entropy of inverse limit dynamical system,
Block et al. [], Bruin [] and Raines and Stimac [] discussed the properties of inverse
limit spaces of tent maps. Liu and Zhao [] investigated Martelli chaos of inverse limit
dynamical systems and proved that inverse limit dynamical systems were Martelli chaos
implied that original systems was Martelli chaos.

In this paper we discuss stronger forms of sensitivity for inverse limit dynamical systems
on the basis of []. Our purpose is to discuss implication of stronger forms of sensitivity be-
tween inverse limit systems and original systems. It is shown that the inverse limit system
is syndetically sensitive (resp. cofinitely sensitive, ergodically sensitive, multi-sensitive) if
and only if original system is syndetically sensitive (resp. cofinitely sensitive, ergodically
sensitive, multi-sensitive). Also, we prove that the inverse limit system is syndetically tran-
sitive if and only if original system is syndetically transitive.

2 Preliminaries
Let (X, d) be a compact metric space and let f : X → X be a continuous map. The inverse
limit space of f is a metric space defined by the sequence

X
f← X

f← X
f← ·· ·

whose elements x = (x, x, x, . . .) satisfy f (xi+) = xi, i = , , , . . . , and the metric is defined
by

d(x, y) =
∞∑

i=

d(xi, yi)
i .

The inverse limit space of (X, f ) is denoted by lim←(X, f ).
The inverse limit space lim←(X, f ) is a compact subspace of product space

∏∞
i= Xi

(Xi = X, i = , , . . .), the shift map σf : lim←(X, f ) → lim←(X, f ) is defined by σf (x, x, . . .) =
(f (x), x, x, . . .). Furthermore, σ k

f (x, x, . . .) = (f k(x), f k(x), . . .), where k ∈ N . σf is a
homeomorphism and σ –

f (x, x, x, . . .) = (x, x, . . .). The inverse limit dynamical system
is denoted by (lim←(X, f ),σf ).
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The projection map πi : lim←(X, f ) → X is defined by πi(x, x, . . . xi, . . .) = xi for i =
, , . . . . Clearly, πi is a continuous mapping, and f ◦ πi = πi ◦ σf for i = , , . . . . If f is a
surjective map, then πi is an open surjective mapping for i = , , . . . . The metric d induces
the inverse limit topology. This topology has a basis

B =
{

V : V = π–
i (U) for some i ≥  and some open set U in X

}
.

Let (X, f ) be a dynamical system, orb(x, f ) be the orbit of x under f for some x ∈ X, i.e.,
orb(x, f ) = {x, f (x), f (x), . . . , f n(x), . . .} where f n = f ◦ f n– and f  be the identity map on X.
For any two nonempty sets U , V ⊂ X, we write Nf (U , V ) = {n ∈ N+ : U ∩ f –n(V ) �= ∅}.

A map f : X → X is topologically transitive if Nf (U , V ) is nonempty, for any nonempty
open sets U , V ⊂ X.

A subset S ⊂ N+ is thick if S contains arbitrarily large blocks of consecutive numbers.
A subset S ⊂ N+ is syndetic if N+ \ S is not thick.

A map f : X → X is syndetically transitive if Nf (U , V ) is syndetic, for any nonempty open
sets U , V ⊂ X.

We shall use card A to denote the cardinality of A.
An upper density of a set A ⊂ N is the number

d∗(A) = lim
k→∞

sup


k + 
card{ ≤ j ≤ k : j ∈ A}.

A lower density of a set A ⊂ N is the number

d∗(A) = lim
k→∞

inf


k + 
card{ ≤ j ≤ k : j ∈ A}.

f is topologically ergodic if for every pair of nonempty open sets U , V ⊂ X, the set
Nf (U , V ) has positive upper density.

Let (X, f ) be a dynamical system. According to the classical definition, f has sensitive
dependence if there is a δ >  such that for any x ∈ X and any open neighborhood Vx

of x, there is an n ∈ N such that sup{d(f n(x), f n(y)) : y ∈ Vx} > δ. We can write this in
a slightly different way. For U ⊂ X and δ > , let Nf (U , δ) = {n ∈ N : there exist x, y ∈
V with d(f n(x), f n(y)) > δ}. Now, we say:

() f is sensitive if there exists a δ >  such that for any nonempty open set U ⊂ X ,
Nf (U , δ) is nonempty.

() f is syndetically sensitive if there exists a δ >  such that for every nonempty open
subset U ⊂ X , Nf (U , δ) is syndetic.

() f is cofinitely sensitive if there exists a δ >  such that for every nonempty open
subset U ⊂ X , Nf (U , δ) is cofinite, that is, N \ Nf (U , δ) is finite.

() f is ergodically sensitive if there exists a δ >  such that for every nonempty open
subset U ⊂ X , Nf (U , δ) has positive upper density.

() f is multi-sensitive if there exists δ >  such that for every integer k >  and for any
nonempty open subsets U, U, . . . , Uk ⊂ X ,

⋂k
i= Nf (Ui, δ) �= ∅.

Here δ >  will be referred as a constant of sensitivity. Clearly, syndetic sensitivity implies
ergodic sensitivity. It is well known from the definition of the ergodic sensitive and The-
orem  in [] that ergodic sensitivity implies sensitivity and the converse does not hold.
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By Theorem  and Corollary  in [], one can conclude that both syndetic sensitivity and
ergodic sensitivity are weaker than cofinite sensitivity. It is easy to show that:

() Cofinite sensitivity ⇒ multi-sensitivity.
() If f × f is topologically transitive (this is known as topologically weak mixing), then

f is multi-sensitivity.
Corollary  and Theorem  from [] show that every Sturmian subshift is syndetically

sensitive, and that no Sturmian subshift is cofinitely sensitive. In addition, Theorem  in
[] shows that there exists a transitive, sensitive subshift which is not syndetically sensitive.
Consequently, there are sensitive transformations that are not syndetically sensitive, and
syndetically sensitive maps that are not cofinitely sensitive.

Definition . Let (X, f ) and (Y , g) be two dynamical systems. Then f and g are said to be
topologically conjugate if there exists a homeomorphism h : X → Y such that h ◦ f = g ◦ h.
The homeomorphism h is called a conjugate map.

Also, f and g are said to be topologically semiconjugate (or g is a factor of f ) if h : X → Y
is a continuous surjection such that h ◦ f = g ◦ h.

3 Main results
In this section, we shall discuss in the inverse limit spaces and find that the inverse limit
dynamical system (lim←(X, f ),σf ) has stronger forms of sensitivity if and only if (X, f ) has
stronger forms of sensitivity, i.e., the inverse limit system is syndetically sensitive (resp.
cofinitely sensitive, ergodically sensitive, multi-sensitive) if and only if original system is
syndetically sensitive (resp. cofinitely sensitive, ergodically sensitive, multi-sensitive).

Theorem . Let (lim←(X, f ),σf ) be an inverse limit dynamical system. Then f is syndet-
ically transitive if and only if so is σf .

Proof Necessity. Suppose that f is syndetically transitive. We shall prove that Nσf (Ũ , Ṽ ) is
a syndetic set for any nonempty open subsets Ũ and Ṽ in lim←(X, f ).

Let Ũ and Ṽ be any nonempty open subsets lim←(X, f ). Take y ∈ Ṽ and δ >  satisfying
B(y, δ) ⊂ Ṽ , where B(y, δ) is a δ-neighborhood of y. Denote M = diam X = sup{d(x, y) : x, y ∈
X}. When n is large enough, M

n < δ
 . Since πn is an open map for the above enough large n,

πn(Ũ) and πn(B(y, δ)) are two nonempty subsets in X. Moreover, f is syndetically transitive,
then Nf (πn(Ũ),πn(B(y, δ))) is syndetic. Furthermore, for any k ∈ Nf (πn(Ũ),πn(B(y, δ))), we
have f k(πn(Ũ)) ∩ πn(B(y, δ)) �= ∅. Take x = (x, x, x, . . .) ∈ Ũ and z = (z, z, z, . . .) ∈ B(y, δ)
such that f k(xn) = zn. Hence, f k(xj) = zj, j = , , . . . , n. Since

d
(
σ k

f (x), y
) ≤ d

(
σ k

f (x), z
)

+ d(z, y)

≤
n∑

j=

d(f k(xj), zj)
j +

∞∑

j=n+

d(f k(xj), zj)
j +

δ



≤  +
M
n +

δ


< δ,

we have σ k
f (x) ∈ B(y, δ) ⊂ Ṽ , i.v., σ k

f (Ũ) ∩ Ṽ �= ∅. Therefore, k ∈ Nσf (Ũ , Ṽ ), furthermore,
Nf (πn(Ũ),πn(B(y, δ))) ⊂ Nσf (Ũ , Ṽ ). This shows that Nσf (Ũ , Ṽ ) is syndetic, which implies
that σf is syndetically transitive.
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Sufficiency. Suppose that σf is syndetically transitive. We shall prove that Nf (U , V ) is a
syndetic set for any nonempty open subsets U and V in (X, f ).

Let U and V be any nonempty subsets in X. Then π–
 (U) and π–

 (V ) are two
nonempty subsets in lim←(X, f ) because π : lim←(X, f ) → X is a continuous map.
Since σf is syndetically transitive, we have Nσf (π–

 (U),π–
 (V )) is syndetic. For every

k ∈ Nσf (π–
 (U),π–

 (V )), we have π–
 (U) ∩ σ –k

f (π–
 (V )) �= ∅. Since f k ◦ π = π ◦ σ k

f ,
we have π–

 (U) ∩ π–
 (f –k(V )) �= ∅, furthermore, π–

 (U ∩ f –k(V )) �= ∅, which implies
U ∩ f –k(V ) �= ∅. Therefore, we have k ∈ Nf (U , V ) and Nσf (π–

 (U),π–
 (V )) ⊂ Nf (U , V ).

This shows that Nf (U , V ) is syndetic, i.e., f is syndetically transitive. �

Theorem . Let (X, f ) be a dynamical system and f : X → X be a surjective map. Then f
is syndetically sensitive if and only if so is σf .

Proof Necessity. Suppose that f is syndetically sensitive with sensitive constant δ > . We
shall prove that Nσf (Ũ , δ) is syndetic for any nonempty open subset Ũ in lim←(X, f ).

Let Ũ be any nonempty open subset in lim←(X, f ). Then π(Ũ) is a nonempty open
subset in X because π is an open map. Since f is syndetically sensitive with sensitive
constant δ > , Nf (π(Ũ), δ) is syndetic. For any k ∈ Nf (π(Ũ), δ), there exist x, y ∈ π(Ũ)
such that d(f k(x), f k(y)) > δ. Let x = (x, x, . . .) ∈ π–

 (x)∩Ũ , y = (y, y, . . .) ∈ π–
 (y)∩Ũ .

Then

d
(
σ k

f (x),σ k
f (y)

)
=

∞∑

i=

d(f k(xi), f k(yi))
i ≥ d

(
f k(x), f k(y)

)
> δ.

Hence, k ∈ Nσf (Ũ , δ) and Nf (π(Ũ), δ) ⊂ Nσf (Ũ , δ). This shows Nσf (Ũ , δ) is syndetic, i.e.,
σf is syndetically sensitive.

Sufficiency. Suppose that σf is syndetically sensitive with sensitive constant δ > . We
shall prove that Nf (U , δ

 ) is syndetic for any nonempty subset U in X.
Let U be a nonempty subset in X. Then π–

 (U) is a nonempty subset in lim←(X, f ) be-
cause π is a continuous map. Take x ∈ π–

 (U), then there exists m >  such that B(x, δ
m ) ⊂

π–
 (U). Since σf is syndetically sensitive with sensitive constant δ > , Nσf (B(x, δ

m ), δ)
is syndetic. For any k ∈ Nσf (B(x, δ

m ), δ), there exist x∗, y∗ ∈ B(x, δ
m ) such that d(σ k

f (x∗),
σ k

f (y∗)) > δ. Since σ k–
f is continuous for x, there exists δ

m < δ′ < δ
 , when x′ ∈ B(x, δ′), we

have d(σ k–
f (x′),σ k–

f (x)) < δ
 . By the triangular inequality, d(σ k–

f (x∗),σ k–
f (y∗)) < δ

 .
Let x∗ = (x∗

, x∗
 , . . .) and y∗ = (y∗

, y∗
 , . . .). Then x∗

 = π(x∗) ∈ U and y∗
 = π(y∗) ∈ U . Since

d
(
σ k

f
(
x∗),σ k

f
(
y∗)) =

∞∑

i=

d(f k(x∗
i ), f k(y∗

i ))
i

= d
(
f k(x∗


)
, f k(y∗


))

+
∞∑

i=

d(f k(x∗
i ), f k(y∗

i ))
i

= d
(
f k(x∗


)
, f k(y∗


))

+



∞∑

i=

d(f k–(x∗
i ), f k–(y∗

i ))
i

= d
(
f k(x∗


)
, f k(y∗


))

+



d
(
σ k–

f
(
x∗),σ k–

f
(
y∗))

≤ d
(
f k(x∗


)
, f k(y∗


))

+


δ,
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we have d(f k(x∗
), f k(y∗

)) > 
δ > 

δ, which implies that k ∈ Nf (U , δ
 ). Furthermore,

Nσf (B(x, δ
m ), δ) ⊂ Nf (U , δ

 ). This shows that Nf (U , δ
 ) is syndetic, i.e., f is syndetically sen-

sitive. �

Theorem . Let (X, f ) be a dynamical system and f : X → X be a surjective map. Then f
is cofinitely sensitive if and only if so is σf .

Proof Necessity. Suppose that f is cofinitely sensitive with sensitive constant δ > . We
shall prove that Nσf (Ũ , δ) is cofinite for any nonempty open subset Ũ in lim←(X, f ).

Let Ũ be any nonempty open subset in lim←(X, f ). Then π(Ũ) is a nonempty open
subset in X because π is an open map. Since f is cofinitely sensitive with sensitive constant
δ > , then Nf (π(Ũ), δ) is cofinite, i.e., N \ Nf (π(Ũ), δ) is finite. For any k ∈ Nf (π(Ũ), δ),
there exist x, y ∈ π(Ũ) such that d(f k(x), f k(y)) > δ. Let x = (x, x, . . .) ∈ π–

 (x) ∩ Ũ
and y = (y, y, . . .) ∈ π–

 (y) ∩ Ũ . Then

d
(
σ k

f (x),σ k
f (y)

)
=

∞∑

i=

d(f k(xi), f k(yi))
i ≥ d

(
f k(x), f k(y)

)
> δ.

Hence, k ∈ Nσf (Ũ , δ) and Nf (π(Ũ), δ) ⊂ Nσf (Ũ , δ). Furthermore, N \ Nσf (Ũ , δ) is finite.
This shows Nσf (Ũ , δ) is cofinite, i.e., σf is cofinitely sensitive.

Sufficiency. Suppose that σf is cofinitely sensitive with sensitive constant δ > . We shall
prove that Nf (U , δ

 ) is cofinite for any nonempty subset U in X.
Let U be a nonempty subset in X. Then π–

 (U) is a nonempty subset in lim←(X, f ) be-
cause π is a continuous map. Take x ∈ π–

 (U), then there exists m >  such that B(x, δ
m ) ⊂

π–
 (U). Since σf is cofinitely sensitive with sensitive constant δ > , then Nσf (B(x, δ

m ), δ)
is cofinite. For any k ∈ Nσf (B(x, δ

m ), δ), there exist x∗, y∗ ∈ B(x, δ
m ) such that d(σ k

f (x∗),
σ k

f (y∗)) > δ. Since σ k–
f is continuous for x, then there exists δ

m < δ′ < δ
 , when x′ ∈ B(x, δ′),

we have d(σ k–
f (x′),σ k–

f (x)) < δ
 . By the triangular inequality, d(σ k–

f (x∗),σ k–
f (y∗)) < δ

 .
Let x∗ = (x∗

, x∗
 , . . .) and y∗ = (y∗

, y∗
 , . . .). Then x∗

 = π(x∗) ∈ U and y∗
 = π(y∗) ∈ U . Since

d
(
σ k

f
(
x∗),σ k

f
(
y∗)) =

∞∑

i=

d(f k(x∗
i ), f k(y∗

i ))
i

= d
(
f k(x∗


)
, f k(y∗


))

+
∞∑

i=

d(f k(x∗
i ), f k(y∗

i ))
i

= d
(
f k(x∗


)
, f k(y∗


))

+



∞∑

i=

d(f k–(x∗
i ), f k–(y∗

i ))
i

= d
(
f k(x∗


)
, f k(y∗


))

+



d
(
σ k–

f
(
x∗),σ k–

f
(
y∗))

≤ d
(
f k(x∗


)
, f k(y∗


))

+


δ,

we have d(f k(x∗
), f k(y∗

)) > 
δ > 

δ, which implies that k ∈ Nf (U , δ
 ). Furthermore, Nσf (B(x,

δ
m ), δ) ⊂ Nf (U , δ

 ). This shows that Nf (U , δ
 ) is cofinite, i.e., f is cofinitely sensitive. �

Theorem . Let (X, f ) be a dynamical system and f : X → X be a surjective map. Then f
is ergodically sensitive if and only if so is σf .
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Proof Necessity. Suppose that f is ergodically sensitive with sensitive constant δ > . We
shall prove that Nσf (Ũ , δ) has positive upper density for any nonempty open subset Ũ in
lim←(X, f ).

Let Ũ be any nonempty open subset in lim←(X, f ). Then π(Ũ) is a nonempty open sub-
set in X because π is an open map. Since f is ergodically sensitive with sensitive constant
δ > , Nf (π(Ũ), δ) has positive upper density, i.e.,

d∗(Nf
(
π(Ũ), δ

))
= lim

k→∞
sup


k + 

card
{

 ≤ j ≤ k : j ∈ Nf
(
π(Ũ), δ

)}
> .

For any k ∈ Nf (π(Ũ), δ), there exist x, y ∈ π(Ũ) such that d(f k(x), f k(y)) > δ. Let x =
(x, x, . . .) ∈ π–

 (x) ∩ Ũ and y = (y, y, . . .) ∈ π–
 (y) ∩ Ũ . Then

d
(
σ k

f (x),σ k
f (y)

)
=

∞∑

i=

d(f k(xi), f k(yi))
i ≥ d

(
f k(x), f k(y)

)
> δ.

Hence, k ∈ Nσf (Ũ , δ) and Nf (π(Ũ), δ) ⊂ Nσf (Ũ , δ). Furthermore,

d∗(Nσf (Ũ , δ)
) ≥ d∗(Nf

(
π(Ũ), δ

))
.

Moreover, d∗(Nf (π(Ũ), δ)) > , so d∗(Nσf (Ũ , δ)) > . This shows Nσf (Ũ , δ) positive upper
density, i.e., σf is ergodically sensitive.

Sufficiency. Suppose that σf is ergodically sensitive with sensitive constant δ > . We
shall prove that Nf (U , δ

 ) has positive upper density for any nonempty subset U in X.
Let U be a nonempty subset in X. Then π–

 (U) is a nonempty subset in lim←(X, f )
because π is a continuous map. Take x ∈ π–

 (U), then there exists m >  such that
B(x, δ

m ) ⊂ π–
 (U). Since σf is ergodically sensitive with sensitive constant δ > ,

d∗
(

Nσf

(
B
(

x,
δ

m

)
, δ

))
= lim

k→∞
sup


k + 

card

{
 ≤ j ≤ k : j ∈ B

(
x,

δ

m

)}
> .

For any k ∈ Nσf (B(x, δ
m ), δ), there exist x∗, y∗ ∈ B(x, δ

m ) such that d(σ k
f (x∗),σ k

f (y∗)) > δ.
Since σ k–

f is continuous for x, there exists δ
m < δ′ < δ

 , when x′ ∈ B(x, δ′), we have
d(σ k–

f (x′),σ k–
f (x)) < δ

 . By the triangular inequality, d(σ k–
f (x∗),σ k–

f (y∗)) < δ
 .

Let x∗ = (x∗
, x∗

 , . . .) and y∗ = (y∗
, y∗

 , . . .). Then x∗
 = π(x∗) ∈ U and y∗

 = π(y∗) ∈ U . Since

d
(
σ k

f
(
x∗),σ k

f
(
y∗)) =

∞∑

i=

d(f k(x∗
i ), f k(y∗

i ))
i

= d
(
f k(x∗


)
, f k(y∗


))

+
∞∑

i=

d(f k(x∗
i ), f k(y∗

i ))
i

= d
(
f k(x∗


)
, f k(y∗


))

+



∞∑

i=

d(f k–(x∗
i ), f k–(y∗

i ))
i

= d
(
f k(x∗


)
, f k(y∗


))

+



d
(
σ k–

f
(
x∗),σ k–

f
(
y∗))

≤ d
(
f k(x∗


)
, f k(y∗


))

+


δ,
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we have d(f k(x∗
), f k(y∗

)) > 
δ > 

δ, which implies that k ∈ Nf (U , δ
 ). Furthermore,

Nσf (B(x, δ
m ), δ) ⊂ Nf (U , δ

 ), which implies that d∗(Nf (U , δ
 )) ≥ d∗(Nσf (B(x, δ

m ), δ)). This
shows that d∗(Nf (U , δ

 )) > , i.e., f is ergodically sensitive. �

Theorem . Let (X, f ) be a dynamical system and f : X → X be a surjective map. Then f
is multi-sensitive if and only if so is σf .

Proof Necessity. Suppose that f is multi-sensitive with sensitive constant δ > . We shall
prove that

⋂p
i= Nσf (Ũi, δ) �= ∅ for every p ∈ N and any nonempty open subset Ũi (i =

, , . . . , p) in lim←(X, f ).
Let Ũi (i = , , . . . , p) be any nonempty open subset in lim←(X, f ). Then π(Ũi) (i =

, , . . . , p) is a nonempty open subset in X because π is an open map. Since f is
multi-sensitive with sensitive constant δ > , then

⋂p
i= Nf (π(Ũi), δ) �= ∅. For any k ∈

⋂p
i= Nf (π(Ũi), δ), there exist xi, yi ∈ π(Ũi) such that d(f k(xi), f k(yi)) > δ for i =

, , . . . , p. Let xi = (xi, xi, . . .) ∈ π–
 (xi) ∩ Ũ and yi = (yi, yi, . . .) ∈ π–

 (yi) ∩ Ũ for
i = , , . . . , p. Then

d
(
σ k

f (xi),σ k
f (yi)

)
=

∞∑

j=

d(f k(xij), f k(yij))
j ≥ d

(
f k(xi), f k(yi)

)
> δ for i = , , . . . , p.

Hence, k ∈ Nσf (Ũi, δ) and Nf (π(Ũi), δ) ⊂ Nσf (Ũi, δ) for i = , , . . . , p. Furthermore, k ∈
⋂p

i=(Nσf (Ũi, δ)). This shows
⋂p

i=(Nσf (Ũi, δ)) �= ∅, i.e., σf is multi-sensitive.
Sufficiency. Suppose that σf is multi-sensitive with sensitive constant δ > . We shall

prove that
⋂p

i= Nf (Ui, δ
 ) �= ∅ for any nonempty open subset Ui (i = , , . . . , p) in X.

Let Ui (i = , , . . . , p) be a nonempty open subset in X. Then π–
 (Ui) is a nonempty open

subset in lim←(X, f ) because π is a continuous map. Take xi ∈ π–
 (Ui), then there ex-

ists m >  such that B(xi, δ
m ) ⊂ π–

 (Ui) for i = , , . . . , p. Since σf is multi-sensitive with
sensitive constant δ > , we have

⋂p
i= Nσf (B(xi, δ

m ), δ) �= ∅. For any k ∈ Nσf (B(xi, δ
m ), δ)

(i = , , . . . , p), there exist x∗
i , y∗

i ∈ B(x, δ
m ) such that d(σ k

f (x∗
i ),σ k

f (y∗
i )) > δ. Since σ k–

f is con-
tinuous for xi, there exists δ

m < δ′ < δ
 , when x′

i ∈ B(xi, δ′), we have d(σ k–
f (x′

i),σ k–
f (xi)) < δ


for i = , , . . . , p. By the triangular inequality, d(σ k–

f (x∗
i ),σ k–

f (y∗
i )) < δ

 for i = , , . . . , p.
Let x∗

i = (x∗
i, x∗

i, . . .) and y∗
i = (y∗

i, y∗
i, . . .) for i = , , . . . , p. Then x∗

i = π(x∗
i ) ∈ Ui and

y∗
i = π(y∗

i ) ∈ Ui for i = , , . . . , p. Since

d
(
σ k

f
(
x∗

i
)
,σ k

f
(
y∗

i
))

=
∞∑

j=

d(f k(x∗
ij), f k(y∗

ij))
j

= d
(
f k(x∗

i
)
, f k(y∗

i
))

+
∞∑

j=

d(f k(x∗
ij), f k(y∗

ij))
j

= d
(
f k(x∗

i
)
, f k(y∗

i
))

+



∞∑

j=

d(f k–(x∗
ij), f k–(y∗

ij))
j

= d
(
f k(x∗

i
)
, f k(y∗

i
))

+



d
(
σ k–

f
(
x∗

i
)
,σ k–

f
(
y∗

i
))

≤ d
(
f k(x∗

i
)
, f k(y∗

i
))

+


δ,
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we have d(f k(x∗
i), f k(y∗

i)) > 
δ > 

δ, which implies that k ∈ Nf (Ui, δ
 ) for i = , , . . . , p. Fur-

thermore, k ∈ ⋂p
i= Nf (Ui, δ

 ), which implies that
⋂p

i= Nf (Ui, δ
 ) �= ∅. This shows that f is

multi-sensitive. �
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