411 research outputs found
Thermal annealing and temperature dependences of memory effect in organic memory transistor
We investigate the annealing and thermal effects of organic non-volatile memory with floating silver nanoparticles by real-time transfer curve measurements. During annealing, the memory window shows shrinkage of 23 due to structural variation of the nanoparticles. However, by increasing the device operating temperature from 20 to 90 Β°C after annealing, the memory window demonstrates an enlargement up to 100. The differences in the thermal responses are explained and confirmed by the co-existence of electron and hole traps. Our findings provide a better understanding of organic memory performances under various operating temperatures and validate their applications for temperature sensing or thermal memories. Β© 2011 American Institute of Physics.published_or_final_versio
Thermal annealing and temperature dependences of memory effect in organic memory transistor
Author name used in this publication: F. YanAuthor name used in this publication: P. K. L. Chan2011-2012 > Academic research: refereed > Publication in refereed journalVersion of RecordPublishe
One-to-many laser fanout generated by single large-size two-dimensional holographic photonic crystal
The phenomenon of one-to-many laser fanout in large-size two-dimensional (2D) holographic photonic crystals (H-PhCs) is presented. Theoretical analysis demonstrates that the phenomenon is induced by multiple substrate waveguiding effect of 2D H-PhCs, and the orientations of the waveguided beams depend on the lattice structures of 2D H-PhCs. The fanout angle and separations between output spots are determined by lambda/d, light incident angle and thickness of glass substrate, therefore can be controlled via fabricating special lattice structures. The phenomenon has the potential to enable the application of 2D PhCs as interconnection devices in optical networks. (c) 2005 American Institute of Physics
Electronic Origin of High Temperature Superconductivity in Single-Layer FeSe Superconductor
The latest discovery of high temperature superconductivity signature in
single-layer FeSe is significant because it is possible to break the
superconducting critical temperature ceiling (maximum Tc~55 K) that has been
stagnant since the discovery of Fe-based superconductivity in 2008. It also
blows the superconductivity community by surprise because such a high Tc is
unexpected in FeSe system with the bulk FeSe exhibiting a Tc at only 8 K at
ambient pressure which can be enhanced to 38 K under high pressure. The Tc is
still unusually high even considering the newly-discovered intercalated FeSe
system A_xFe_{2-y}Se_2 (A=K, Cs, Rb and Tl) with a Tc at 32 K at ambient
pressure and possible Tc near 48 K under high pressure. Particularly
interesting is that such a high temperature superconductivity occurs in a
single-layer FeSe system that is considered as a key building block of the
Fe-based superconductors. Understanding the origin of high temperature
superconductivity in such a strictly two-dimensional FeSe system is crucial to
understanding the superconductivity mechanism in Fe-based superconductors in
particular, and providing key insights on how to achieve high temperature
superconductivity in general. Here we report distinct electronic structure
associated with the single-layer FeSe superconductor. Its Fermi surface
topology is different from other Fe-based superconductors; it consists only of
electron pockets near the zone corner without indication of any Fermi surface
around the zone center. Our observation of large and nearly isotropic
superconducting gap in this strictly two-dimensional system rules out existence
of node in the superconducting gap. These results have provided an unambiguous
case that such a unique electronic structure is favorable for realizing high
temperature superconductivity
Two-dome structure in electron-doped iron arsenide superconductors
Iron arsenide superconductors based on the material LaFeAsO1-xFx are
characterized by a two-dimensional Fermi surface (FS) consisting of hole and
electron pockets yielding structural and antiferromagnetic transitions at x =
0. Electron doping by substituting O2- with F- suppresses these transitions and
gives rise to superconductivity with a maximum Tc = 26 K at x = 0.1. However,
the over-doped region cannot be accessed due to the poor solubility of F- above
x = 0.2. Here we overcome this problem by doping LaFeAsO with hydrogen. We
report the phase diagram of LaFeAsO1-xHx (x < 0.53) and, in addition to the
conventional superconducting dome seen in LaFeAsO1-xFx, we find a second dome
in the range 0.21 < x < 0.53, with a maximum Tc of 36 K at x = 0.3. Density
functional theory calculations reveal that the three Fe 3d bands (xy, yz, zx)
become degenerate at x = 0.36, whereas the FS nesting is weakened monotonically
with x. These results imply that the band degeneracy has an important role to
induce high Tc.Comment: 31 pages, 4 figures, 1 table and supplementary informatio
Recent changes of water discharge and sediment load in the Yellow River basin, China
The Yellow River basin contributes approximately 6% of the sediment load from all river systems globally, and the annual runoff directly supports 12% of the Chinese population. As a result, describing and understanding recent variations of water discharge and sediment load under global change scenarios are of considerable importance. The present study considers the annual hydrologic series of the water discharge and sediment load of the Yellow River basin obtained from 15 gauging stations (10 mainstream, 5 tributaries). The Mann-Kendall test method was adopted to detect both gradual and abrupt change of hydrological series since the 1950s. With the exception of the area draining to the Upper Tangnaihai station, results indicate that both water discharge and sediment load have decreased significantly (p<0.05). The declining trend is greater with distance downstream, and drainage area has a significant positive effect on the rate of decline. It is suggested that the abrupt change of the water discharge from the late 1980s to the early 1990s arose from human extraction, and that the abrupt change in sediment load was linked to disturbance from reservoir construction.Geography, PhysicalGeosciences, MultidisciplinarySCI(E)43ARTICLE4541-5613
In-situ SERS study on the electro-oxidation with HCOOH on a roughened platinum electrode
The dissociative adsorption and oxidation behavior of HCOOH on Pt was investigated by cyclic voltammogram (CV) and in-situ surface enhanced Raman spectroscopy (SERS) techniques. The in-stiu SERS of HCOOH adsorption, dissociation and oxidation on rough Pt is reported. It is found that HCOOH can spontaneously dissociate. The surface Raman spectra of CO, the strongly adsorbed intermediate and COOH, the weakly adsorbed intermediate of the dissociative adsorption of HCOOH were successfully obtained for the first time. At the same time, the Raman spectra of the finally oxidized product CO2 of HCOOH was also firstly detected. The dual path reaction mechanism for the oxidation of HCOOH was confirmed at molecular level
Phase Diagram and High Temperature Superconductivity at 65 K in Tuning Carrier Concentration of Single-Layer FeSe Films
Superconductivity in the cuprate superconductors and the Fe-based
superconductors is realized by doping the parent compound with charge carriers,
or by application of high pressure, to suppress the antiferromagnetic state.
Such a rich phase diagram is important in understanding superconductivity
mechanism and other physics in the Cu- and Fe-based high temperature
superconductors. In this paper, we report a phase diagram in the single-layer
FeSe films grown on SrTiO3 substrate by an annealing procedure to tune the
charge carrier concentration over a wide range. A dramatic change of the band
structure and Fermi surface is observed, with two distinct phases identified
that are competing during the annealing process. Superconductivity with a
record high transition temperature (Tc) at ~65 K is realized by optimizing the
annealing process. The wide tunability of the system across different phases,
and its high-Tc, make the single-layer FeSe film ideal not only to investigate
the superconductivity physics and mechanism, but also to study novel quantum
phenomena and for potential applications.Comment: 15 pages, 4 figure
Mechanisms of TSC-mediated Control of Synapse Assembly and Axon Guidance
Tuberous sclerosis complex is a dominant genetic disorder produced by mutations in either of two tumor suppressor genes, TSC1 and TSC2; it is characterized by hamartomatous tumors, and is associated with severe neurological and behavioral disturbances. Mutations in TSC1 or TSC2 deregulate a conserved growth control pathway that includes Ras homolog enriched in brain (Rheb) and Target of Rapamycin (TOR). To understand the function of this pathway in neural development, we have examined the contributions of multiple components of this pathway in both neuromuscular junction assembly and photoreceptor axon guidance in Drosophila. Expression of Rheb in the motoneuron, but not the muscle of the larval neuromuscular junction produced synaptic overgrowth and enhanced synaptic function, while reductions in Rheb function compromised synapse development. Synapse growth produced by Rheb is insensitive to rapamycin, an inhibitor of Tor complex 1, and requires wishful thinking, a bone morphogenetic protein receptor critical for functional synapse expansion. In the visual system, loss of Tsc1 in the developing retina disrupted axon guidance independently of cellular growth. Inhibiting Tor complex 1 with rapamycin or eliminating the Tor complex 1 effector, S6 kinase (S6k), did not rescue axon guidance abnormalities of Tsc1 mosaics, while reductions in Tor function suppressed those phenotypes. These findings show that Tsc-mediated control of axon guidance and synapse assembly occurs via growth-independent signaling mechanisms, and suggest that Tor complex 2, a regulator of actin organization, is critical in these aspects of neuronal development
The Naturally Occurring YMDD Mutation among Patients Chronically Infected HBV and Untreated with Lamivudine: A Systematic Review and Meta-Analysis
Background: Several recent reports have demonstrated that tyrosine (Y)-methionine (M)-aspartic acid (D)-aspartic acid (D) (YMDD) motif mutations can naturally occur in chronic HBV patients without antiviral treatment such as lamivudine therapy. This paper aims to assess the overall spontaneous incidence and related risk factors of YMDD-motif mutations among lamivudine-naΓ―ve chronic HBV carriers, so as to provide some clue for clinical treatment of hepatitis B. Methodology/Principal Findings: Chinese and English literatures were searched for studies reporting natural YMDD mutations among untreated chronic HBV patients from 2001 to 2010. The incidence estimates were summarized and analyzed by meta-analyses. Forty-seven eligible articles from eight countries were selected in this review (13 in English and 34 in Chinese). The pooled incidence of YMDD-motif mutation among untreated chronic HBV patients from eight countries was 12.21 % (95 % CI: 9.69%β14.95%). China had an incidence of 13.38 % (95 % CI: 10.90%β16.07%) and seven other countries had an incidence of 9.90 % (95 % CI: 3.28%β19.55%), respectively. Lamivudine therapy would increase the risk of mutations 5.23 times higher than the untreated patients. A higher HBV DNA copy number was associated with increased incidence of natural YMDD mutation. No significant difference was found in YMDD mutation incidence between groups of different gender, age, HBeAg status, patients β ALT (alanine aminotransferase) level, and between the groups of HBV genotype B and C. Conclusions: The YMDD-motif mutations can occur spontaneously with a relatively high incidence in CHB patient
- β¦