1,270 research outputs found
A quantitative link between microplastic instability and macroscopic deformation behaviors in metallic glasses
2009-2010 > Academic research: refereed > Publication in refereed journalVersion of RecordPublishe
A quantitative link between microplastic instability and macroscopic deformation behaviors in metallic glasses
Based on mechanical instability of individual shear transformation zones (STZs), a quantitative link between the microplastic instability and macroscopic deformation behavior of metallic glasses was proposed. Our analysis confirms that macroscopic metallic glasses comprise a statistical distribution of STZ embryos with distributed values of activation energy, and the microplastic instability of all the individual STZs dictates the macroscopic deformation behavior of amorphous solids. The statistical model presented in this paper can successfully reproduce the macroscopic stress-strain curves determined experimentally and readily be used to predict strain-rate effects on the macroscopic responses with the availability of the material parameters at a certain strain rate, which offer new insights into understanding the actual deformation mechanism in amorphous solids. © 2009 American Institute of Physics.published_or_final_versio
Recommended from our members
Measurement of cosmic-ray muons and muon-induced neutrons in the Aberdeen Tunnel Underground Laboratory
postprin
BMN vacua, superstars and non-abelian T-duality
Acting with non-Abelian T-duality on the inside the subspace of
with units of flux, we generate a new half-BPS solution
with symmetry that belongs to the Lin-Lunin-Maldacena class of
geometries. The analysis of the asymptotics, quantised charges and probe branes
in this geometry suggests an interpretation as the gravity dual to the
Berenstein-Maldacena-Nastase Plane Wave Matrix Model, in a particular vacuum
associated to a partition of , in which the multiplicity of each
irreducible representation is equal to its dimension. This vacuum is
interpreted in M-theory in terms of giant gravitons backreacting in the
maximally supersymmetric pp-wave geometry. Consistently with this, we show that
the non-Abelian T-dual solution exactly agrees with the Penrose limit of the
superstar solution in . This suggests an interesting global
completion of the non-Abelian T-dual solution in terms of an M5-brane geometry.Comment: 28 pages, discussion in section 5.1 improved, results unchanged,
reference added. Matches published versio
A pivotal role for starch in the reconfiguration of 14C-partitioning and allocation in Arabidopsis thaliana under short-term abiotic stress.
Plant carbon status is optimized for normal growth but is affected by abiotic stress. Here, we used 14C-labeling to provide the first holistic picture of carbon use changes during short-term osmotic, salinity, and cold stress in Arabidopsis thaliana. This could inform on the early mechanisms plants use to survive adverse environment, which is important for efficient agricultural production. We found that carbon allocation from source to sinks, and partitioning into major metabolite pools in the source leaf, sink leaves and roots showed both conserved and divergent responses to the stresses examined. Carbohydrates changed under all abiotic stresses applied; plants re-partitioned 14C to maintain sugar levels under stress, primarily by reducing 14C into the storage compounds in the source leaf, and decreasing 14C into the pools used for growth processes in the roots. Salinity and cold increased 14C-flux into protein, but as the stress progressed, protein degradation increased to produce amino acids, presumably for osmoprotection. Our work also emphasized that stress regulated the carbon channeled into starch, and its metabolic turnover. These stress-induced changes in starch metabolism and sugar export in the source were partly accompanied by transcriptional alteration in the T6P/SnRK1 regulatory pathway that are normally activated by carbon starvation
Measurement of CP-violation asymmetries in D0 to Ks pi+ pi-
We report a measurement of time-integrated CP-violation asymmetries in the
resonant substructure of the three-body decay D0 to Ks pi+ pi- using CDF II
data corresponding to 6.0 invfb of integrated luminosity from Tevatron ppbar
collisions at sqrt(s) = 1.96 TeV. The charm mesons used in this analysis come
from D*+(2010) to D0 pi+ and D*-(2010) to D0bar pi-, where the production
flavor of the charm meson is determined by the charge of the accompanying pion.
We apply a Dalitz-amplitude analysis for the description of the dynamic decay
structure and use two complementary approaches, namely a full Dalitz-plot fit
employing the isobar model for the contributing resonances and a
model-independent bin-by-bin comparison of the D0 and D0bar Dalitz plots. We
find no CP-violation effects and measure an asymmetry of ACP = (-0.05 +- 0.57
(stat) +- 0.54 (syst))% for the overall integrated CP-violation asymmetry,
consistent with the standard model prediction.Comment: 15 page
Improved measurement of the reactor antineutrino flux and spectrum at Daya Bay
published_or_final_versio
- …
