1,195 research outputs found

    A Simple Method to Synthesize Cadmium Hydroxide Nanobelts

    Get PDF
    Cd(OH)2nanobelts have been synthesized in high yield by a convenient polyol method for the first time. XRD, XPS, FESEM, and TEM were used to characterize the product, which revealed that the product consisted of belt-like crystals about 40 nm in thickness and length up to several hundreds of micrometers. Studies found that the viscosity of the solvent has important influence on the morphology of the final products. The optical absorption spectrum indicates that the Cd(OH)2nanobelts have a direct band gap of 4.45 eV

    Shared-network scheme of SMV and GOOSE in smart substation

    Get PDF

    Solidly Mounted Resonators with Carbon Nanotube Electrodes for Biosensing Applications

    Get PDF
    The work reported here shows a direct experimental comparison of the sensitivities of AlN solidly mounted resonators (SMR)-based biosensors fabricated with standard metal electrodes and with carbon nanotube electrodes. SMRs resonating at frequencies around 1.75 GHz have been fabricated, some devices using a thin film of multi-wall carbon nanotubes (CNTs) as the top electrode material and some identical devices using a chromium/gold electrode. Protein solutions with different concentrations were loaded on the top of the resonators and their responses to mass-load from physically adsorbed coatings were investigated. Results show that resonators using CNTs as the top electrode material exhibited higher frequency change for a given load due to the higher active surface area of a thin film of interconnecting CNTs compared to that of a metal thin film electrode and hence exhibited greater mass loading sensitivity. It is therefore concluded that the use of CNT electrodes on resonators for their use as gravimetric biosensors is viable and worthwhile

    AlN-based BAW resonators with CNT electrodes for gravimetric biosensing

    Get PDF
    Solidly mounted resonators (SMRs) with a top carbon nanotubes (CNTs) surface coating that doubles as an electrode and as a sensing layer have been fabricated. The influence of the CNTs on the frequency response of the resonators was studied by direct comparison to identical devices with a top metallic electrode. It was found that the CNTs introduced significantly less mass load on the resonators and these devices exhibited a greater quality factor, Q (>2000, compared to ∼1000 for devices with metal electrodes), which increases the gravimetric sensitivity of the devices by allowing the tracking of smaller frequency shifts. Protein solutions with different concentrations were loaded on the top of the resonators and their responses to mass-load from physically adsorbed coatings were investigated. Results show that resonators using CNTs as the top electrode exhibited a higher frequency change for a given load (∼0.25 MHz cm2 ng−1) compared to that of a metal thin film electrode (∼0.14 MHz cm2 ng−1), due to the lower mass of the CNT electrodes and their higher active surface area compared to that of a thin film metal electrode. It is therefore concluded that the use of CNT electrodes on resonators for their use as gravimetric biosensors is a significant improvement over metallic electrodes that are normally employed

    Lithium reduces apoptosis and autophagy after neonatal hypoxia–ischemia

    Get PDF
    Lithium is used in the treatment of bipolar mood disorder. Reportedly, lithium can be neuroprotective in models of adult brain ischemia. The purpose of this study was to evaluate the effects of lithium in a model of neonatal hypoxic–ischemic brain injury. Nine-day-old male rats were subjected to unilateral hypoxia–ischemia (HI) and 2 mmol/kg lithium chloride was injected i.p. immediately after the insult. Additional lithium injections, 1 mmol/kg, were administered at 24-h intervals. Pups were killed 6, 24 or 72 h after HI. Lithium reduced the infarct volume from 24.7±2.9 to 13.8±3.3 mm3 (44.1%) and total tissue loss (degeneration + lack of growth) from 67.4±4.4 to 38.4±5.9 mm3 (43.1%) compared with vehicle at 72 h after HI. Injury was reduced in the cortex, hippocampus, thalamus and striatum. Lithium reduced the ischemia-induced dephosphorylation of glycogen synthase kinase-3β and extracellular signal-regulated kinase, the activation of calpain and caspase-3, the mitochondrial release of cytochrome c and apoptosis-inducing factor, as well as autophagy. We conclude that lithium could mitigate the brain injury after HI by inhibiting neuronal apoptosis. The lithium doses used were in the same range as those used in bipolar patients, suggesting that lithium might be safely used for the avoidance of neonatal brain injury

    Janus monolayers of transition metal dichalcogenides.

    Get PDF
    Structural symmetry-breaking plays a crucial role in determining the electronic band structures of two-dimensional materials. Tremendous efforts have been devoted to breaking the in-plane symmetry of graphene with electric fields on AB-stacked bilayers or stacked van der Waals heterostructures. In contrast, transition metal dichalcogenide monolayers are semiconductors with intrinsic in-plane asymmetry, leading to direct electronic bandgaps, distinctive optical properties and great potential in optoelectronics. Apart from their in-plane inversion asymmetry, an additional degree of freedom allowing spin manipulation can be induced by breaking the out-of-plane mirror symmetry with external electric fields or, as theoretically proposed, with an asymmetric out-of-plane structural configuration. Here, we report a synthetic strategy to grow Janus monolayers of transition metal dichalcogenides breaking the out-of-plane structural symmetry. In particular, based on a MoS2 monolayer, we fully replace the top-layer S with Se atoms. We confirm the Janus structure of MoSSe directly by means of scanning transmission electron microscopy and energy-dependent X-ray photoelectron spectroscopy, and prove the existence of vertical dipoles by second harmonic generation and piezoresponse force microscopy measurements

    A facile chemical conversion synthesis of Sb2S3 nanotubes and the visible light-driven photocatalytic activities

    Get PDF
    We report a simple chemical conversion and cation exchange technique to realize the synthesis of Sb2S3 nanotubes at a low temperature of 90°C. The successful chemical conversion from ZnS nanotubes to Sb2S3 ones benefits from the large difference in solubility between ZnS and Sb2S3. The as-grown Sb2S3 nanotubes have been transformed from a weak crystallization to a polycrystalline structure via successive annealing. In addition to the detailed structural, morphological, and optical investigation of the yielded Sb2S3 nanotubes before and after annealing, we have shown high photocatalytic activities of Sb2S3 nanotubes for methyl orange degradation under visible light irradiation. This approach offers an effective control of the composition and structure of Sb2S3 nanomaterials, facilitates the production at a relatively low reaction temperature without the need of organics, templates, or crystal seeds, and can be extended to the synthesis of hollow structures with various compositions and shapes for unique properties
    corecore