913 research outputs found

    The molecular systems composed of the charmed mesons in the HSˉ+h.c.H\bar{S}+h.c. doublet

    Full text link
    We study the possible heavy molecular states composed of a pair of charm mesons in the H and S doublets. Since the P-wave charm-strange mesons Ds0(2317)D_{s0}(2317) and Ds1(2460)D_{s1}(2460) are extremely narrow, the future experimental observation of the possible heavy molecular states composed of Ds/DsD_s/D_s^\ast and Ds0(2317)/Ds1(2460)D_{s0}(2317)/D_{s1}(2460) may be feasible if they really exist. Especially the possible JPC=1J^{PC}=1^{--} states may be searched for via the initial state radiation technique.Comment: 42 pages, 4 tables, 31 figures. Improved numerical results and Corrected typos

    Analysis of the radiative decays among the charmonium states

    Full text link
    In this article, we study the radiative decays among the charmonium states with the heavy quark effective theory, and make predictions for the ratios among the radiative decay widths of an special multiplet to another multiplet. The predictions can be confronted with the experimental data in the future and put additional constraints in identifying the XX, YY, ZZ charmonium-like mesons.Comment: 12 pages, revised revisio

    Partial Wave Analysis of J/ψγ(K+Kπ+π)J/\psi \to \gamma (K^+K^-\pi^+\pi^-)

    Full text link
    BES data on J/ψγ(K+Kπ+π)J/\psi \to \gamma (K^+K^-\pi^+\pi^-) are presented. The KKˉK^*\bar K^* contribution peaks strongly near threshold. It is fitted with a broad 0+0^{-+} resonance with mass M=1800±100M = 1800 \pm 100 MeV, width Γ=500±200\Gamma = 500 \pm 200 MeV. A broad 2++2^{++} resonance peaking at 2020 MeV is also required with width 500\sim 500 MeV. There is further evidence for a 2+2^{-+} component peaking at 2.55 GeV. The non-KKˉK^*\bar K^* contribution is close to phase space; it peaks at 2.6 GeV and is very different from KKˉK^{*}\bar{K^{*}}.Comment: 15 pages, 6 figures, 1 table, Submitted to PL

    Heavy quarkonium: progress, puzzles, and opportunities

    Get PDF
    A golden age for heavy quarkonium physics dawned a decade ago, initiated by the confluence of exciting advances in quantum chromodynamics (QCD) and an explosion of related experimental activity. The early years of this period were chronicled in the Quarkonium Working Group (QWG) CERN Yellow Report (YR) in 2004, which presented a comprehensive review of the status of the field at that time and provided specific recommendations for further progress. However, the broad spectrum of subsequent breakthroughs, surprises, and continuing puzzles could only be partially anticipated. Since the release of the YR, the BESII program concluded only to give birth to BESIII; the BB-factories and CLEO-c flourished; quarkonium production and polarization measurements at HERA and the Tevatron matured; and heavy-ion collisions at RHIC have opened a window on the deconfinement regime. All these experiments leave legacies of quality, precision, and unsolved mysteries for quarkonium physics, and therefore beg for continuing investigations. The plethora of newly-found quarkonium-like states unleashed a flood of theoretical investigations into new forms of matter such as quark-gluon hybrids, mesonic molecules, and tetraquarks. Measurements of the spectroscopy, decays, production, and in-medium behavior of c\bar{c}, b\bar{b}, and b\bar{c} bound states have been shown to validate some theoretical approaches to QCD and highlight lack of quantitative success for others. The intriguing details of quarkonium suppression in heavy-ion collisions that have emerged from RHIC have elevated the importance of separating hot- and cold-nuclear-matter effects in quark-gluon plasma studies. This review systematically addresses all these matters and concludes by prioritizing directions for ongoing and future efforts.Comment: 182 pages, 112 figures. Editors: N. Brambilla, S. Eidelman, B. K. Heltsley, R. Vogt. Section Coordinators: G. T. Bodwin, E. Eichten, A. D. Frawley, A. B. Meyer, R. E. Mitchell, V. Papadimitriou, P. Petreczky, A. A. Petrov, P. Robbe, A. Vair

    Well-Posedness of Nematic Liquid Crystal Flow in Luloc3(R3)L^3_{\hbox{uloc}}(\R^3)

    Full text link
    In this paper, we establish the local well-posedness for the Cauchy problem of the simplified version of hydrodynamic flow of nematic liquid crystals (\ref{LLF}) in R3\mathbb R^3 for any initial data (u0,d0)(u_0,d_0) having small Luloc3L^3_{\hbox{uloc}}-norm of (u0,d0)(u_0,\nabla d_0). Here Luloc3(R3)L^3_{\hbox{uloc}}(\mathbb R^3) is the space of uniformly locally L3L^3-integrable functions. For any initial data (u0,d0)(u_0, d_0) with small (u0,d0)L3(R3)\displaystyle |(u_0,\nabla d_0)|_{L^3(\mathbb R^3)}, we show that there exists a unique, global solution to (\ref{LLF}) which is smooth for t>0t>0 and has monotone deceasing L3L^3-energy for t0t\ge 0.Comment: 29 page

    Ultra violet sensors based on nanostructured ZnO spheres in network of nanowires: a novel approach

    Get PDF
    The ZnO nanostructures consisting of micro spheres in a network of nano wires were synthesized by direct vapor phase method. X-ray Photoelectron Spectroscopy measurements were carried out to understand the chemical nature of the sample. ZnO nanostructures exhibited band edge luminescence at 383 nm. The nanostructure based ZnO thin films were used to fabricate UV sensors. The photoresponse measurements were carried out and the responsivity was measured to be 50 mA W−1. The rise and decay time measurements were also measured

    Possible tetraquark states in the π+χc1\pi^+ \chi_{c1} invariant mass distribution

    Full text link
    In this article, we assume that there exist hidden charmed tetraquark states with the spin-parity JP=1J^P=1^-, and calculate their masses with the QCD sum rules. The numerical result indicates that the masses of the vector hidden charmed tetraquark states are about MZ=(5.12±0.15)GeVM_{Z}=(5.12\pm0.15) \rm{GeV} or MZ=(5.16±0.16)GeVM_{Z}=(5.16\pm0.16) \rm{GeV}, which are inconsistent with the experimental data on the π+χc1\pi^+ \chi_{c1} invariant mass distribution. The hidden charmed mesons Z1Z_1, Z2Z_2 or ZZ may be scalar hidden charmed tetraquark states, hadro-charmonium resonances or molecular states.Comment: 12 pages, 4 figure

    ELM mitigation by supersonic molecular beam injection: KSTAR and HL-2A experiments and theory

    Full text link
    We report recent experimental results from HL-2A and KSTAR on ELM mitigation by supersonic molecular beam injection (SMBI). Cold particle deposition within the pedestal by SMBI is verified in both machines. The signatures of ELM mitigation by SMBI are an ELM frequency increase and ELM amplitude decrease. These persist for an SMBI influence time τI. Here, τI is the time for the SMBI influenced pedestal profile to refill. An increase in fELMSMBI/fELM0 and a decrease in the energy loss per ELM ΔWELM were achieved in both machines. Physical insight was gleaned from studies of density and vΦ (toroidal rotation velocity) evolution, particle flux and turbulence spectra, divertor heat load. The characteristic gradients of the pedestal density soften and a change in vΦ was observed during a τI time. The spectra of the edge particle flux Γ ∼ 〈ṽrñe〉 and density fluctuation with and without SMBI were measured in HL-2A and in KSTAR, respectively. A clear phenomenon observed is the decrease in divertor heat load during the τI time in HL-2A. Similar results are the profiles of saturation current density Jsat with and without SMBI in KSTAR. We note that τI/τp (particle confinement time) is close to ∼1, although there is a large difference in individual τI between the two machines. This suggests that τI is strongly related to particle-transport events. Experiments and analysis of a simple phenomenological model support the important conclusion that ELM mitigation by SMBI results from an increase in higher frequency fluctuations and transport events in the pedestal. © 2014 IAEA, Vienna
    corecore