129 research outputs found

    Study on the effect of biogas project on the development of lowcarbon circular economy -A case study of Beilangzhong eco-village

    Get PDF
    AbstractWith Beilangzhong eco-village as an example, the effects of the biogas project on the reduction of greenhouse gas (GHG) emission and its economic effects are analyzed. The results show that 1833.45t GHG (CO2 equivalent) was reduced, and an income of 1,117,000 Yuan (RMB), a net income of 958,500 Yuan (RMB), was gained by biogas sales, alternative energy, comprehensive utilization of anaerobic fermentation residues and the reduction of GHG emission, so the biogas project can greatly promote the establishment of low-carbon circular economy mode and sustainable development of ecological agriculture in Beilangzhong eco-village

    Identification of a candidate gene for Rc-D1, a locus controlling red coleoptile colour in wheat

    Get PDF
    Red coleoptile is an easily observed agronomic trait of wheat and has been extensively studied. However, the molecular mechanism of this trait has not yet been revealed. In this study, the MYB gene TaMYB-D1 was isolated from the wheat cultivar ‘Gy115’, which possesses red coleoptiles. This gene resided at the short arm of the homoelogous group 7 chromosomes. TaMYB-D1 was the only gene expressed in the coleoptiles of ‘Gy115’ and was not expressed in ‘Opata’ and ‘CS’, which have uncoloured coleoptiles. Phylogenetic analysis placed TaMYB-D1 very close to ZmC1 and other MYB proteins regulating anthocyanin biosynthesis. The encoded protein of TaMYB-D1 had an integrated DNA binding domain of 102 amino acids and a transcription domain with 42 amino acids, similar to the structure of ZmC1. Transient expression analysis in onion epidermal cells showed that TaMYB-D1 was located at the plant nucleus, which suggested its role as a transcription factor. The expression of TaMYB-D1 was accompanied with the expression of TaDFR and anthocyanin biosynthesis in the development of the coleoptile of ‘Gy115’. Transient expression analysis showed that only TaMYB-D1 induced a few ‘Opata’ coleoptile cells to synthesize anthocyanin in light, and the gene also induced a colour change to red in many cells with the help of ZmR. All of these results suggested TaMYB-D1 as the candidate gene for the red coleoptile trait of ‘Gy115’

    Wafer-scale selective area growth of GaN hexagonal prismatic nanostructures on c-sapphire substrate

    Get PDF
    Selective area growth of GaN nanostructures has been performed on full 2" c-sapphire substrates using Si3N4 mask patterned by nanoimprint lithography (array of 400 nm diameter circular holes). A new process has been developed to improve the homogeneity of the nucleation selectivity of c-oriented hexagonal prismatic nanostructures at high temperature (1040\circ C). It consists of an initial GaN nucleation step at 950 \circ C followed by ammonia annealing before high temperature growth. Structural analyses show that GaN nanostructures are grown in epitaxy with c-sapphire with lateral overgrowths on the mask. Strain and dislocations are observed at the interface due to the large GaN/sapphire lattice mismatch in contrast with the high quality of the relaxed crystals in the lateral overgrowth area. A cathodoluminescence study as a function of the GaN nanostructure size confirms these observations: the lateral overgrowth of GaN nanostructures has a low defect density and exhibits a stronger near band edge (NBE) emission than the crystal in direct epitaxy with sapphire. The shift of the NBE positions versus nanostructure size can be mainly attributed to a combination of compressive strain and silicon doping coming from surface mask diffusion

    Observation of the decay \psip\rar\kstark

    Full text link
    Using 14 million ψ(2S)\psi(2S) events collected with the BESII detector, branching fractions of \psip\rar\kstarkpm and \kstarknn are determined to be: \calB(\psip\rar\kstarkpm)=(2.9^{+1.3}_{-1.7}\pm0.4)\times 10^{-5} and \calB(\psip\rar\kstarknn)=(13.3^{+2.4}_{-2.7}\pm1.9)\times 10^{-5}. The results confirm the violation of the "12%" rule for these two decay channels with higher precision. A large isospin violation between the charged and neutral modes is observed.Comment: 5 pages, 3 figure

    The inflammatory cytokine IL-6 induces FRA1 deacetylation promoting colorectal cancer stem-like properties

    Get PDF
    Colorectal cancer (CRC) has long been known for its tight association with chronic inflammation, thought to play a key role in tumor onset and malignant progression through the modulation of cancer stemness. However, the underlying molecular and cellular mechanisms are still largely elusive. Here we show that the IL-6/STAT3 inflammatory signaling axis induces the deacetylation of FRA1 at the Lys-116 residue located within its DNA-binding domain. The HDAC6 deacetylase underlies this key modification leading to the increase of FRA1 transcriptional activity, the subsequent transactivation of NANOG expression, and the acquisition of stem-like cellular features. As validated in a large (n = 123) CRC cohort, IL-6 secretion was invariably accompanied by increased FRA1 deacetylation at K116 and an overall increase in its protein levels, coincident with malignant progression and poor prognosis. Of note, combined treatment with the conventional cytotoxic drug 5-FU together with Tubastatin A, a HDAC6-specific inhibitor, resulted in a significant in vivo synergistic inhibitory effect on tumor growth through suppression of CRC stemness. Our results reveal a novel transcriptional and posttranslational regulatory cross-talk between inflammation and stemness signaling pathways that underlie self-renewal and maintenance of CRC stem cells and promote their malignant behavior. Combinatorial treatment aimed at the core regulatory mechanisms downstream of IL-6 may offer a novel promising approach for CRC treatment

    MBE growth and properties of Cr-doped ZnTe on GaAs(001)

    No full text
    10.1016/j.tsf.2005.10.024Thin Solid Films5051-2126-128THSF
    corecore