195 research outputs found
Revising the kinematics of 12GHz CH3OH masers in W3(OH)
We derive accurate proper motions of the CH3OH 12 GHz masers towards the
W3(OH) UCHII region, employing seven epochs of VLBA observations spanning a
time interval of about 10 yr. The achieved velocity accuracy is of the order of
0.1 km/s, adequate to precisely measure the relative velocities of most of the
12 GHz masers in W3(OH), with amplitude varying in the range 0.3 - 3 km/s.
Towards W3(OH), the most intense 12 GHz masers concentrate in a small area
towards the north (the northern clump) of the UCHII region. We have compared
the proper motions of the CH3OH 12 GHz masers with those (derived from
literature data) of the OH 6035 MHz masers, emitting from the same region of
the methanol masers. In the northern clump, the two maser emissions emerge from
nearby (but likely distinct) cloudlets of masing gas with, in general, a rather
smooth variation of line-of-sight and sky-projected velocities, which suggests
some connection of the environments and kinematics traced by both maser types.
The conical outflow model, previously proposed to account for the 12 GHz maser
kinematics in the northern clump, does not reproduce the new, accurate
measurements of 12 GHz maser proper motions and has to be rejected. We focus on
the subset of 12 GHz masers of the northern clump belonging to the "linear
structure at P.A. = 130-140 degree", whose regular variation of LSR velocities
with position presents evidence for some ordered motion. We show that the
3-dimensional velocities of this "linear distribution" of 12GHz masers can be
well fitted considering a flat, rotating disk, seen almost edge-on.Comment: 32 pages, 10 figures; accepted in ApJ (Main Journal
Impact of ambient oxygen on the surface structure of α-Cr2O3(0001)
Surface x-ray diffraction has been employed to quantitatively assess the surface structure of α-Cr2O3(0001) as a function of oxygen partial pressure at room temperature. In ultrahigh vacuum, the surface is found to exhibit a partially occupied double layer of chromium atoms. At an oxygen partial pressure of 1×10−2 mbar, the surface is determined to be terminated by chromyl species (CrO), clearly demonstrating that the presence of oxygen can significantly influence the structure of α-Cr2O3(0001)
Trigonometric Parallaxes of Massive Star Forming Regions: II. Cep A & NGC 7538
We report trigonometric parallaxes for the sources NGC 7538 and Cep A,
corresponding to distances of 2.65 [+0.12/-0.11] kpc and 0.70 [+0.04/-0.04]
kpc, respectively. The distance to NGC 7538 is considerably smaller than its
kinematic distance and places it in the Perseus spiral arm. The distance to Cep
A is also smaller than its kinematic distance and places it in the Local arm or
spur. Combining the distance and proper motions with observed radial velocities
gives the location and full space motion of the star forming regions. We find
significant deviations from circular Galactic orbits for these sources: both
sources show large peculiar motions (> 10 km/s) counter to Galactic rotation
and NGC 7538 has a comparable peculiar motion toward the Galactic center.Comment: 21 pages, 8 figures; to appear in the Astrophysical Journa
Structure of a model TiO2 photocatalytic interface
The interaction of water with TiO2 is crucial to many of its practical
applications, including photocatalytic water splitting. Following the first
demonstration of this phenomenon 40 years ago there have been numerous studies
of the rutile single-crystal TiO2(110) interface with water. This has provided
an atomic-level understanding of the water-TiO2 interaction. However, nearly
all of the previous studies of water/TiO2 interfaces involve water in the
vapour phase. Here, we explore the interfacial structure between liquid water
and a rutile TiO2(110) surface pre-characterized at the atomic level. Scanning
tunnelling microscopy and surface X-ray diffraction are used to determine the
structure, which is comprised of an ordered array of hydroxyl molecules with
molecular water in the second layer. Static and dynamic density functional
theory calculations suggest that a possible mechanism for formation of the
hydroxyl overlayer involves the mixed adsorption of O2 and H2O on a partially
defected surface. The quantitative structural properties derived here provide a
basis with which to explore the atomistic properties and hence mechanisms
involved in TiO2 photocatalysis
Electronic and structural reconstructions of the polar (111) SrTiO3 surface
Polar surfaces are known to be unstable due to the divergence of the surface electrostatic energy. Here we report on the experimental determination, by grazing incidence x-ray diffraction, of the surface structure of polar Ti-terminated (111) SrTiO3 single crystals. We find that the polar instability of the 1 x 1 surface is solved by a pure electronic reconstruction mechanism, which induces out-of-plane ionic displacements typical of the polar response of SrTiO3 layers to an electron confining potential. On the other hand, the surface instability can be also eliminated by a structural reconstruction driven by a change in the surface stoichiometry, which induces a variety of 3 x 3 (111) SrTiO3 surfaces consisting in an incomplete Ti (surface)-O-2 (subsurface) layer covering the 1 x 1 Ti-terminated (111) SrTiO3 truncated crystal. In both cases, the TiO6 octahedra are characterized by trigonal distortions affecting the structural and the electronic symmetry of several unit cells from the surface. These findings show that the stabilization of the polar (111) SrTiO3 surface can lead to the formation of quasi two-dimensional electron systems characterized by radically different ground states which depend on the surface reconstructions
Real examples of surface reconstructions determined by direct methods
In this work the modulus sum function is briefly introduced and its applicability to the automated interpretation of projections of reconstructed surfaces shown. The selected real examples have been arranged according to the interpretation complexity of the respective two-dimensional Patterson maps and correspond to the most common types of surface reconstructions represented by: (i) a shift of the surface atoms from their ideal positions. This type of reconstruction is often found on (001) semiconductor surfaces and its most characteristic structural feature is the pairing of neighbouring surface atoms forming dimers, e.g., the In0.04Ga0.96As(001)-p(4 × 2) reconstructed surface. (ii) Different atom types occupying the surface sites. This type of reconstruction can be induced by both the adsorption of deposited atoms onto the surface, e.g. Sb/Ge(113)-c(2 × 2), or a new structural arrangement of the substrate caused by the adsorption of external molecules onto the surface, e.g. C60/Au(110)-p(6 × 5) reconstructed surface
Structural and electrical properties of indium oxide thin films grown by pulsed laser deposition in oxygen ambient
We report results of structural, optical and electrical transport studies of indium oxide (IO) thin films grown by Pulsed Laser Deposition (PLD) under various oxygen gas pressures and using different substrates at 350° C. We find that the morphology and electrical resistivity of these films which are highly transparent changes drastically as O2pressure increases into mbar range, irrespective of substrate. A systematic increase in resistivity, coming mainly from a drop in the electron concentration, is observed as oxygen pressure varies from 0.0004 to 1 mbar. This could permit modulation of IO thin–films’ electrical parameters by more than three orders of magnitude suggesting that PLD grown films could be an attractive material for optoelectronic applications
Coexisting conical bipolar and equatorial outflows from a high-mass protostar
The BN/KL region in the Orion molecular cloud is an archetype in the study of
the formation of stars much more massive than the Sun. This region contains
luminous young stars and protostars, but it is difficult to study because of
overlying dust and gas. Our basic expectations are shaped to some extent by the
present theoretical picture of star formation, the cornerstone of which is that
protostars acrete gas from rotating equatorial disks, and shed angular momentum
by ejecting gas in bipolar outflows. The main source of the outflow in the
BN/KL region may be an object known as radio source I, which is commonly
believed to be surrounded by a rotating disk of molecular material. Here we
report high-resolution observations of silicon monoxide (SiO) and water maser
emission from the gas surrounding source I; we show that within 60 AU (about
the size of the Solar System), the region is dominated by a conical bipolar
outflow, rather than the expected disk. A slower outflow, close to the
equatorial plane of the protostellar system, extends to radii of 1,000 AU.Comment: 10 pages, 2 figures. Accepted by Nature. To appear December 199
Surface x-ray-diffraction study of the Rh(111)+(2×2)−3CO structure
We have studied the geometry of the high-coverage Rh(111)+(2×2)−3CO structure by surface x-ray diffraction. Analysis of the in-plane data set reveals three evenly separated CO molecules per (2×2) unit cell. The evaluation of the crystal truncation rods shows that one CO molecule resides in an on-top site while the other two CO molecules occupy hollow sites. The intensity modulations of the out-of-plane fractional order rods provide geometrical information about distances between the C and O atoms and on the buckling of the CO overlayer
- …
