81 research outputs found

    The Boom of cohabitation in Colombia and in the Andean Region : social and spatial patterns

    Get PDF
    In this chapter we use census microdata to document the rise in cohabitation in Colombia and in the Andean countries of Ecuador, Bolivia, Perú and Venezuela over the last four decades. We use multilevel logistic regression models to examine the effect of individual and contextual variables on cohabitation. We show the individual and contextual effects of social stratification, ethnicity and religion on cohabitation. Cohabitation levels follow a negative gradient with education and vary according to ethnic background. The Bolivian, Ecuadorian and Peruvian censuses reveal that the two largest ethnic groups (i.e. the Quechua and Aymara) have, controlling for other characteristics, the lowest incidence of cohabitation. By contrast, Afro-American populations show the highest levels of cohabitation. The joint use of individual- and contextual-level explanatory variables is sufficient to account for the majority of Bolivia's internal diversity regarding cohabitation, but not sufficient to account for the internal diversity identified in Colombia, Peru or Ecuador. Even after controls, residence in the Andes mountain areas continues to be a factor associated with lower levels of cohabitation. This invites further investigations on how the institutionalization of marriage occurred in the Andes

    Bottlenecks in the Acute Stroke Care System during the COVID-19 Pandemic in Catalonia

    Get PDF
    Introduction: The COVID-19 pandemic resulted in significant healthcare reorganizations, potentially striking standard medical care. We investigated the impact of the COVID-19 pandemic on acute stroke care quality and clinical outcomes to detect healthcare system's bottlenecks from a territorial point of view. Methods: Crossed-data analysis between a prospective nation-based mandatory registry of acute stroke, Emergency Medical System (EMS) records, and daily incidence of COVID-19 in Catalonia (Spain). We included all stroke code activations during the pandemic (March 15-May 2, 2020) and an immediate prepandemic period (January 26-March 14, 2020). Primary outcomes were stroke code activations and reperfusion therapies in both periods. Secondary outcomes included clinical characteristics, workflow metrics, differences across types of stroke centers, correlation analysis between weekly EMS alerts, COVID-19 cases, and workflow metrics, and impact on mortality and clinical outcome at 90 days. Results: Stroke code activations decreased by 22% and reperfusion therapies dropped by 29% during the pandemic period, with no differences in age, stroke severity, or large vessel occlusion. Calls to EMS were handled 42 min later, and time from onset to hospital arrival increased by 53 min, with significant correlations between weekly COVID-19 cases and more EMS calls (rho = 0.81), less stroke code activations (rho = -0.37), and longer prehospital delays (rho = 0.25). Telestroke centers were afflicted with higher reductions in stroke code activations, reperfusion treatments, referrals to endovascular centers, and increased delays to thrombolytics. The independent odds of death increased (OR 1.6 [1.05-2.4], p 0.03) and good functional outcome decreased (mRS ≤2 at 90 days: OR 0.6 [0.4-0.9], p 0.015) during the pandemic period. Conclusion: During the COVID-19 pandemic, Catalonia's stroke system's weakest points were the delay to EMS alert and a decline of stroke code activations, reperfusion treatments, and interhospital transfers, mostly at local centers. Patients suffering an acute stroke during the pandemic period had higher odds of poor functional outcome and death. The complete stroke care system's analysis is crucial to allocate resources appropriately

    Targeted metatranscriptomics of compost derived consortia reveals a GH11 exerting an unusual exo-1,4-β-xylanase activity

    Get PDF
    Background: Using globally abundant crop residues as a carbon source for energy generation and renewable chemicals production stands out as a promising solution to reduce current dependency on fossil fuels. In nature, such as in compost habitats, microbial communities efficiently degrade the available plant biomass using a diverse set of synergistic enzymes. However, deconstruction of lignocellulose remains a challenge for industry due to recalcitrant nature of the substrate and the inefficiency of the enzyme systems available, making the economic production of lignocellulosic biofuels difficult. Metatranscriptomic studies of microbial communities can unveil the metabolic functions employed by lignocellulolytic consortia and identify new biocatalysts that could improve industrial lignocellulose conversion. Results: In this study, a microbial community from compost was grown in minimal medium with sugarcane bagasse sugarcane bagasse as the sole carbon source. Solid-state nuclear magnetic resonance was used to monitor lignocellulose degradation; analysis of metatranscriptomic data led to the selection and functional characterization of several target genes, revealing the first glycoside hydrolase from Carbohydrate Active Enzyme family 11 with exo-1,4-β-xylanase activity. The xylanase crystal structure was resolved at 1.76 Å revealing the structural basis of exo-xylanase activity. Supplementation of a commercial cellulolytic enzyme cocktail with the xylanase showed improvement in Avicel hydrolysis in the presence of inhibitory xylooligomers. Conclusions: This study demonstrated that composting microbiomes continue to be an excellent source of biotechnologically important enzymes by unveiling the diversity of enzymes involved in in situ lignocellulose degradation

    Functional annotation of the transcriptome of Sorghum bicolor in response to osmotic stress and abscisic acid

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Higher plants exhibit remarkable phenotypic plasticity allowing them to adapt to an extensive range of environmental conditions. Sorghum is a cereal crop that exhibits exceptional tolerance to adverse conditions, in particular, water-limiting environments. This study utilized next generation sequencing (NGS) technology to examine the transcriptome of sorghum plants challenged with osmotic stress and exogenous abscisic acid (ABA) in order to elucidate genes and gene networks that contribute to sorghum's tolerance to water-limiting environments with a long-term aim of developing strategies to improve plant productivity under drought.</p> <p>Results</p> <p>RNA-Seq results revealed transcriptional activity of 28,335 unique genes from sorghum root and shoot tissues subjected to polyethylene glycol (PEG)-induced osmotic stress or exogenous ABA. Differential gene expression analyses in response to osmotic stress and ABA revealed a strong interplay among various metabolic pathways including abscisic acid and 13-lipoxygenase, salicylic acid, jasmonic acid, and plant defense pathways. Transcription factor analysis indicated that groups of genes may be co-regulated by similar regulatory sequences to which the expressed transcription factors bind. We successfully exploited the data presented here in conjunction with published transcriptome analyses for rice, maize, and Arabidopsis to discover more than 50 differentially expressed, drought-responsive gene orthologs for which no function had been previously ascribed.</p> <p>Conclusions</p> <p>The present study provides an initial assemblage of sorghum genes and gene networks regulated by osmotic stress and hormonal treatment. We are providing an RNA-Seq data set and an initial collection of transcription factors, which offer a preliminary look into the cascade of global gene expression patterns that arise in a drought tolerant crop subjected to abiotic stress. These resources will allow scientists to query gene expression and functional annotation in response to drought.</p

    Upstream regulatory architecture of rice genes: summarizing the baseline towards genus-wide comparative analysis of regulatory networks and allele mining

    Get PDF

    Converting homogeneous to heterogeneous in electrophilic catalysis using monodisperse metal nanoparticles

    Full text link
    A continuing goal in catalysis is the transformation of processes from homogeneous to heterogeneous. To this end, nanoparticles represent a new frontier in heterogeneous catalysis, where this conversion is supplemented by the ability to obtain new or divergent reactivity and selectivity. We report a novel method for applying heterogeneous catalysts to known homogeneous catalytic reactions through the design and synthesis of electrophilic platinum nanoparticles. These nanoparticles are selectively oxidized by the hypervalent iodine species PhICl{sub 2}, and catalyze a range of {pi}-bond activation reactions previously only homogeneously catalyzed. Multiple experimental methods are utilized to unambiguously verify the heterogeneity of the catalytic process. The discovery of treatments for nanoparticles that induce the desired homogeneous catalytic activity should lead to the further development of reactions previously inaccessible in heterogeneous catalysis. Furthermore, our size and capping agent study revealed that Pt PAMAM dendrimer-capped nanoparticles demonstrate superior activity and recyclability compared to larger, polymer-capped analogues
    corecore