13 research outputs found

    The Compact Linear Collider (CLIC) - 2018 Summary Report

    Get PDF

    The Compact Linear Collider (CLIC) - 2018 Summary Report

    Get PDF
    The Compact Linear Collider (CLIC) is a TeV-scale high-luminosity linear e+ee^+e^- collider under development at CERN. Following the CLIC conceptual design published in 2012, this report provides an overview of the CLIC project, its current status, and future developments. It presents the CLIC physics potential and reports on design, technology, and implementation aspects of the accelerator and the detector. CLIC is foreseen to be built and operated in stages, at centre-of-mass energies of 380 GeV, 1.5 TeV and 3 TeV, respectively. CLIC uses a two-beam acceleration scheme, in which 12 GHz accelerating structures are powered via a high-current drive beam. For the first stage, an alternative with X-band klystron powering is also considered. CLIC accelerator optimisation, technical developments and system tests have resulted in an increased energy efficiency (power around 170 MW) for the 380 GeV stage, together with a reduced cost estimate at the level of 6 billion CHF. The detector concept has been refined using improved software tools. Significant progress has been made on detector technology developments for the tracking and calorimetry systems. A wide range of CLIC physics studies has been conducted, both through full detector simulations and parametric studies, together providing a broad overview of the CLIC physics potential. Each of the three energy stages adds cornerstones of the full CLIC physics programme, such as Higgs width and couplings, top-quark properties, Higgs self-coupling, direct searches, and many precision electroweak measurements. The interpretation of the combined results gives crucial and accurate insight into new physics, largely complementary to LHC and HL-LHC. The construction of the first CLIC energy stage could start by 2026. First beams would be available by 2035, marking the beginning of a broad CLIC physics programme spanning 25-30 years

    CARE-rCortex: a Matlab toolbox for the analysis of CArdio-REspiratory-related activity in the Cortex

    No full text
    International audienceBACKGROUND: Although cardio-respiratory (CR) system is generally controlled by the autonomic nervous system, interactions between the cortex and these primary functions are receiving an increasing interest in neurosciences.NEW METHOD: In general, the timing of such internally paced events (e.g. heartbeats or respiratory cycles) may display a large variability. For the analysis of such CR event-related EEG potentials, a baseline must be correctly associated to each cycle of detected events. The open-source toolbox CARE-rCortex provides an easy-to-use interface to detect CR events, define baselines, and analyse in time-frequency (TF) domain the CR-based EEG potentials.RESULTS: CARE-rCortex provides some practical tools to detect and validate these CR events. Users can define baselines time-locked to a phase of respiratory or heart cycle. A statistical test has also been integrated to highlight significant points of the TF maps with respect to the baseline. We illustrate the use of CARE-rCortex with the analysis of two real cardio-respiratory datasets.COMPARISON WITH EXISTING METHODS: Compared to other open-source toolboxes, CARE-rCortex allows users to automatically detect CR events, to define and check baselines for each detected event. Different baseline normalizations can be used in the TF analysis of EEG epochs.CONCLUSIONS: The analysis of CR-related EEG activities could provide valuable information about cognitive or pathological brain states. CARE-rCortex runs in Matlab as a plug-in of the EEGLAB software, and it is publicly available at https://github.com/FannyGrosselin/CARE-rCortex

    Surrogate-Based Artifact Removal From Single-Channel EEG

    No full text
    International audienceObjective: the recent emergence and success of electroencephalography (EEG) in low-cost portable devices, has opened the door to a new generation of applications processing a small number of EEG channels for health monitoring and brain-computer interfacing. These recordings are, however, contaminated by many sources of noise degrading the signals of interest, thus compromising the interpretation of the underlying brain state. In this paper, we propose a new data-driven algorithm to effectively remove ocular and muscular artifacts from single-channel EEG: the surrogate-based artifact removal (SuBAR).Methods: by means of the time-frequency analysis of sur-rogate data, our approach is able to identify and filter automatically ocular and muscular artifacts embedded in single-channel EEG.Results: in a comparative study using artificially contaminated EEG signals, the efficacy of the algorithm in terms of noise removal and signal distortion was superior to other traditionally-employed single-channel EEG denoizing techniques: wavelet thresholding and the canonical correlation analysis combined with an advanced version of the empirical mode decomposition. Even in the presence of mild and severe artifacts, our artifact removal method provides a relative error 4 to 5 times lower than traditional techniques.Significance: in view of these results, the SuBAR method is a promising solution for mobile environments , such as ambulatory healthcare systems, sleep stage scoring, or anesthesia monitoring, where very few EEG channels or even a single channel is available

    Electroencephalographic detection of respiratory-related cortical activity in humans: From event-related approaches to continuous connectivity evaluation

    No full text
    The presence of a respiratoryrelated cortical activity during tidal breathing is abnormal and a hallmark of respiratory difficulties, but its detection requires superior discrimination and temporal resolution. The aim of this study was to validate a computational method using EEG covariance (or connectivity) matrices to detect a change in brain activity related to breathing. In 17 healthy subjects, EEG was recorded during resting unloaded breathing (RB), voluntary sniffs, and breathing against an inspiratory threshold load (ITL). EEG were analyzed by the specially developed covariance-based classifier, event-related potentials, and time-frequency (T-F) distributions. Nine subjects repeated the protocol. The classifier could accurately detect ITL and sniffs compared with the reference period of RB. For ITL, EEG-based detection was superior to airflow-based detection (P < 0.05). A coincident improvement in EEG-airflow correlation in ITL compared with RB (P < 0.05) confirmed that EEG detection relates to breathing. Premotor potential incidence was significantly higher before inspiration in sniffs and ITL compared with RB (P < 0.05), but T-F distributions revealed a significant difference between sniffs and RB only (P < 0.05). Intraclass correlation values ranged from poor (-0.2) to excellent (1.0). Thus, as for conventional event-related potential analysis, the covariance-based classifier can accurately predict a change in brain state related to a change in respiratory state, and given its capacity for near "real-time" detection, it is suitable to monitor the respiratory state in respiratory and critically ill patients in the development of a brain-ventilator interface

    Quality assessment of single-channel EEG for wearable devices

    No full text
    The recent embedding of electroencephalographic (EEG) electrodes in wearable devices raises the problem of the quality of the data recorded in such uncontrolled environments. These recordings are often obtained with dry single-channel EEG devices, and may be contaminated by many sources of noise which can compromise the detection and characterization of the brain state studied. In this paper, we propose a classification-based approach to effectively quantify artefact contamination in EEG segments, and discriminate muscular artefacts. The performance of our method were assessed on different databases containing either artificially contaminated or real artefacts recorded with different type of sensors, includingwet and dry EEG electrodes. Furthermore, the quality of unlabelled databases was evaluated. For all the studied databases, the proposed method is able to rapidly assess the quality of the EEG signals with an accuracy higher than 90%. The obtained performance suggests that our approach provide an efficient, fast and automated quality assessment of EEG signals from low-cost wearable devices typically composed of a dry single EEG channel

    Riemannian Geometry Applied to Detection of Respiratory States from EEG Signals: The Basis for a Brain-Ventilator Interface

    No full text
    Goal: During mechanical ventilation, patient-ventilator disharmony is frequently observed and may result in increased breathing effort, compromising the patient's comfort and recovery. This circumstance requires clinical intervention and becomes challenging when verbal communication is difficult. In this study, we propose a brain-computer interface (BCI) to automatically and noninvasively detect patient-ventilator disharmony from electroencephalographic (EEG) signals: a brain-ventilator interface (BVI). Methods: Our framework exploits the cortical activation provoked by the inspiratory compensation when the subject and the ventilator are desynchronized. Use of a one-class approach and Riemannian geometry of EEG covariance matrices allows effective classification of respiratory states. The BVI is validated on nine healthy subjects that performed different respiratory tasks that mimic a patient-ventilator disharmony. Results: Classification performances, in terms of areas under receiver operating characteristic curves, are significantly improved using EEG signals compared to detection based on air flow. Reduction in the number of electrodes that can achieve discrimination can be often desirable (e.g., for portable BCI systems). By using an iterative channel selection technique, the common highest order ranking, we find that a reduced set of electrodes (=6) can slightly improve for an intrasubject configuration, and it still provides fairly good performances for a general intersubject setting. Conclusion: Results support the discriminant capacity of our approach to identify anomalous respiratory states, by learning from a training set containing only normal respiratory epochs. Significance: The proposed framework opens the door to BVIs for monitoring patient's breathing comfort and adapting ventilator parameters to patient respiratory needs
    corecore