116 research outputs found
The Ph-3 gene from Solanum pimpinellifolium encodes CC-NBS-LRR protein conferring resistance to Phytophthora infestans
Late blight, caused by Phytophthora infestans, is one of the most destructive diseases in tomato. The resistance (R) gene Ph-3, derived from Solanum pimpinellifolium L3708, provides resistance to multiple P. infestans isolates and has been widely used in tomato breeding programmes. In our previous study, Ph-3 was mapped into a region harbouring R gene analogues (RGA) at the distal part of long arm of chromosome 9. To further narrow down the Ph-3 interval, more recombinants were identified using the flanking markers G2-4 and M8-2, which defined the Ph-3 gene to a 26 kb region according to the Heinz1706 reference genome. To clone the Ph-3 gene, a bacterial artificial chromosome (BAC) library was constructed using L3708 and one BAC clone B25E21 containing the Ph-3 region was identified. The sequence of the BAC clone B25E21 showed that only one RGA was present in the target region. A subsequent complementation analysis demonstrated that this RGA, encoding a CC-NBS-LRR protein, was able to complement the susceptible phenotype in cultivar Moneymaker. Thus this RGA was considered the Ph-3 gene. The predicted Ph-3 protein shares high amino acid identity with the chromosome-9-derived potato resistance proteins against P. infestans (Rpi proteins)
Metadherin Contributes to the Pathogenesis of Diffuse Large B-cell Lymphoma
BACKGROUND: Metadherin (MTDH) has been demonstrated as a potentially crucial mediator of various types of human malignancies. However, the expression and role of MTDH in diffuse large-B-cell lymphoma (DLBCL) have not been reported yet. This study aimed to illuminate the role of MTDH in the pathogenesis of DLBCL. METHODOLOGY/PRINCIPAL FINDINGS: A remarkable elevation of MTDH on mRNA level was detected in DLBCL tissues by quantitative polymerase chain reaction (PCR). Using Western-blot analysis we found that the expression of MTDH protein was significantly upregulated in DLBCL cell lines and DLBCL tissues compared with peripheral blood mononuclear cells (PBMCs) from healthy samples and tissues from patients of reactive hyperplasia of lymph node. The results showed high expression of MTDH in 23 of 30 (76.67%) DLBCL tissues by using immunohistochemical analysis and the over expression of MTDH was strongly correlated to the clinical staging of patients with DLBCL (P<0.05). Furthermore, the finding suggested that the increase of MTDH in DLBCL cells could distinctly enhance cell proliferation and inhibit cell apoptosis; meanwhile, inhibition of MTDH expression by specific siRNA clearly enhanced LY8 cell apoptosis. Upregulation of MTDH elevated the protein level of total β-catenin and translocation of β-catenin to the nucleus directly or indirectly. Knockdown of MTDH decreased the level of total, cytoplasmic β-catenin and reduced nuclear accumulation of β-catenin protein. This indicated that the function of MTDH on the development of DLBCL was mediated through regulation of Wnt/β-catenin signaling pathway. CONCLUSIONS/SIGNIFICANCE: Our results suggest that MTDH contributes to the pathogenesis of DLBCL mediated by activation of Wnt/β-catenin pathway. This novel study may contribute to further investigation on the useful biomarkers and potential therapeutic target in the DLBCL patients
OsPIE1, the Rice Ortholog of Arabidopsis PHOTOPERIOD-INDEPENDENT EARLY FLOWERING1, Is Essential for Embryo Development
orthologs in monocots remains unknown., respectively).Taken together, our results suggest that OsPIE1 is the rice ortholog of Arabidopsis PIE1 and plays an essential role in rice embryo development
Deletion of Exon 20 of the Familial Dysautonomia Gene Ikbkap in Mice Causes Developmental Delay, Cardiovascular Defects, and Early Embryonic Lethality
Familial Dysautonomia (FD) is an autosomal recessive disorder that affects 1/3,600 live births in the Ashkenazi Jewish population, and leads to death before the age of 40. The disease is characterized by abnormal development and progressive degeneration of the sensory and autonomic nervous system. A single base pair substitution in intron 20 of the Ikbkap gene accounts for 98% of FD cases, and results in the expression of low levels of the full-length mRNA with simultaneous expression of an aberrantly spliced mRNA in which exon 20 is missing. To date, there is no animal model for the disease, and the essential cellular functions of IKAP - the protein encoded by Ikbkap - remain unknown. To better understand the normal function of IKAP and in an effort to generate a mouse model for FD, we have targeted the mouse Ikbkap gene by homologous recombination. We created two distinct alleles that result in either loss of Ikbkap expression, or expression of an mRNA lacking only exon 20. Homozygosity for either mutation leads to developmental delay, cardiovascular and brain malformations, accompanied with early embryonic lethality. Our analyses indicate that IKAP is essential for expression of specific genes involved in cardiac morphogenesis, and that cardiac failure is the likely cause of abnormal vascular development and embryonic lethality. Our results also indicate that deletion of exon 20 abolishes gene function. This implies that the truncated IKAP protein expressed in FD patients does not retain any significant biological function
Substituent Effects in the Noncovalent Bonding of SO2 to Molecules containing a Carbonyl Group. The Dominating Role of the Chalcogen Bond
The SO2 molecule is paired with a number of carbonyl-containing molecules, and the properties of the resulting complexes are calculated by high-level ab initio theory. The global minimum of each pair is held together primarily by a S···O chalcogen bond wherein the lone pairs of the carbonyl O transfer charge to the π* antibonding SO orbital, supplemented by smaller contributions from weak CH···O H-bonds. The binding energies vary between 4.2 and 8.6 kcal/mol, competitive with even some of the stronger noncovalent forces such as H-bonds and halogen bonds. The geometrical arrangement places the carbonyl O atom above the plane of the SO2 molecule, consistent with the disposition of the molecular electrostatic potentials of the two monomers. This S···O bond differs from the more commonly observed chalcogen bond in both geometry and origin. Substituents exert their influence via inductive effects that change the availability of the carbonyl O lone pairs as well as the intensity of the negative electrostatic potential surrounding this atom
Effects of Charge and Substituent on the S∙∙∙N Chalcogen Bond
Neutral complexes containing a S···N chalcogen bond are compared with similar systems in which a positive charge has been added to the S-containing electron acceptor, using high-level ab initio calculations. The effects on both XS···N and XS+···N bonds are evaluated for a range of different substituents X = CH3, CF3, NH2, NO2, OH, Cl, and F, using NH3 as the common electron donor. The binding energy of XMeS···NH3 varies between 2.3 and 4.3 kcal/mol, with the strongest interaction occurring for X = F. The binding is strengthened by a factor of 2–10 in charged XH2S+···NH3 complexes, reaching a maximum of 37 kcal/mol for X = F. The binding is weakened to some degree when the H atoms are replaced by methyl groups in XMe2S+···NH3. The source of the interaction in the charged systems, like their neutral counterparts, is derived from a charge transfer from the N lone pair into the σ*(SX) antibonding orbital, supplemented by a strong electrostatic and smaller dispersion component. The binding is also derived from small contributions from a CH···N H-bond involving the methyl groups, which is most notable in the weaker complexes
Opportunities and challenges of China’s inquiry-based education reform in middle and high schools: Perspectives of science teachers and teacher educators
Consistent with international trends, an emergent interest in inquiry-based science teaching and learning in K-12 schools is also occurring in China. This study investigates the possibilities for and the barriers to enactment of inquiry-based science education in Chinese schools. Altogether 220 Chinese science teachers, science teacher educators and researchers (primarily from the field of chemistry education) participated in this study in August 2001. Participants represented 13 cities and provinces in China. We administered two questionnaires, one preceding and one following a 3-hour presentation by a US science educator and researcher about inquiry-based teaching and learning theories and practices. In each of three sites in which the study was conducted (Shanghai, Guangzhou and Beijing), questionnaires were administered, and four representative participants were interviewed. Our coding and analysis of quantifiable questionnaire responses (using a Likert scale), of open-ended responses, and of interview transcripts revealed enthusiastic interest in incorporating inquiry-based teaching and learning approaches in Chinese schools. However, Chinese educators face several challenges: (a) the national college entrance exam needs to align with the goals of inquiry-based teaching; (b) systemic reform needs to happen in order for inquiry-based science to be beneficial to students, including a change in the curriculum, curriculum materials, relevant resources, and teacher professional development; (c) class size needs to be reduced; and (d) an equitable distribution of resources in urban and rural schools needs to occur.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/42933/1/10763_2005_Article_1517.pd
- …