318 research outputs found

    Electrochemical Surface Modification of Aluminium Sheets for Application to Nano-electronic Devices: Anodization Aluminium and Electrodeposition of Cobalt-Copper

    Get PDF
    A nano-porous anodized aluminium oxide layer was synthesized on the surface of bulk aluminium at a wide range of anodization voltages. The barrier layer at the pore bottom of anodized aluminium oxide layer was chemically etched to make good electrical contact for nanowires electrodeposited in the pores thus formed on metallic aluminium substrates. Cathodic polarization was examined at a wide range of cathode potentials to investigate the electrodeposition behaviour of Cu and Co into the pores. Co81Cu19/Cu multilayered nanowires were fabricated using a pulse-plating technique into the templates. Co-alloy layer and Cu layer thicknesses were adjusted to 10 nm, by controlling the deposition times. The temperature dependence of the resistance of Co81Cu19/Cu multilayered nanowires grown on the template presented clean metallic characteristics and a giant magnetoresistance (GMR) of 23% was reached at 4

    Current-induced two-level fluctuations in pseudo spin-valves (Co/Cu/Co) nanostructures

    Full text link
    Two-level fluctuations of the magnetization state of pseudo spin-valve pillars Co(10 nm)/Cu(10 nm)/Co(30 nm) embedded in electrodeposited nanowires (~40 nm in diameter, 6000 nm in length) are triggered by spin-polarized currents of 10^7 A/cm^2 at room temperature. The statistical properties of the residence times in the parallel and antiparallel magnetization states reveal two effects with qualitatively different dependences on current intensity. The current appears to have the effect of a field determined as the bias field required to equalize these times. The bias field changes sign when the current polarity is reversed. At this field, the effect of a current density of 10^7 A/cm^2 is to lower the mean time for switching down to the microsecond range. This effect is independent of the sign of the current and is interpreted in terms of an effective temperature for the magnetization.Comment: 4 pages, 5 figures, revised version, to be published in Phys. Rev. Let

    Rashba spin-orbit coupling and spin precession in carbon nanotubes

    Get PDF
    The Rashba spin-orbit coupling in carbon nanotubes and its effect on spin-dependent transport properties are analyzed theoretically. We focus on clean non-interacting nanotubes with tunable number of subbands NN. The peculiar band structure is shown to allow in principle for Datta-Das oscillatory behavior in the tunneling magnetoresistance as a function of gate voltage, despite the presence of multiple bands. We discuss the conditions for observing Datta-Das oscillations in carbon nanotubes.Comment: 12 pages, published versio

    Cerium Oxide Nanoparticles: Advances in Biodistribution, Toxicity, and Preclinical Exploration

    Get PDF
    Antioxidant nanoparticles have recently gained tremendous attention for their enormous potential in biomedicine. However, discrepant reports of either medical benefits or toxicity, and lack of reproducibility of many studies, generate uncertainties delaying their effective implementation. Herein, the case of cerium oxide is considered, a well‐known catalyst in the petrochemistry industry and one of the first antioxidant nanoparticles proposed for medicine. Like other nanoparticles, it is now described as a promising therapeutic alternative, now as threatening to health. Sources of these discrepancies and how this analysis helps to overcome contradictions found for other nanoparticles are summarized and discussed. For the context of this analysis, what has been reported in the liver is reviewed, where many diseases are related to oxidative stress. Since well‐dispersed nanoparticles passively accumulate in liver, it represents a major testing field for the study of new nanomedicines and their clinical translation. Even more, many contradictory works have reported in liver either cerium‐oxide‐associated toxicity or protection against oxidative stress and inflammation. Based on this, finally, the intention is to propose solutions to design improved nanoparticles that will work more precisely in medicine and safely in society

    Ilio-psoas abscess in neonates

    Full text link
    We report two cases of primary ilio-psoas abscess in neonates diagnose by CT and sonography. Iliopsoas abscess is extremely uncommon in this age group.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/46699/1/247_2005_Article_BF02020223.pd

    Involvement of RDR6 in short-range intercellular RNA silencing in Nicotiana benthamiana

    Get PDF
    In plants, non-cell autonomous RNA silencing spreads between cells and over long distances. Recent work has revealed insight on the genetic and molecular components essential for cell-to-cell movement of RNA silencing in Arabidopsis. Using a local RNA silencing assay, we report on a distinct mechanism that may govern the short-range (6–10 cell) trafficking of virus-induced RNA silencing from epidermal to neighbouring palisade and spongy parenchyma cells in Nicotiana benthamiana. This process involves a previously unrecognised function of the RNA-dependent RNA polymerase 6 (RDR6) gene. Our data suggest that plants may have evolved distinct genetic controls in intercellular RNA silencing among different types of cells

    Ret is essential to mediate GDNF’s neuroprotective and neuroregenerative effect in a Parkinson disease mouse model

    Get PDF
    Glial cell line-derived neurotrophic factor (GDNF) is a potent survival and regeneration-promoting factor for dopaminergic neurons in cell and animal models of Parkinson disease (PD). GDNF is currently tested in clinical trials on PD patients with so far inconclusive results. The receptor tyrosine kinase Ret is the canonical GDNF receptor, but several alternative GDNF receptors have been proposed, raising the question of which signaling receptor mediates here the beneficial GDNF effects. To address this question we overexpressed GDNF in the striatum of mice deficient for Ret in dopaminergic neurons and subsequently challenged these mice with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). Strikingly, in this established PD mouse model, the absence of Ret completely abolished GDNF’s neuroprotective and regenerative effect on the midbrain dopaminergic system. This establishes Ret signaling as absolutely required for GDNF’s effects to prevent and compensate dopaminergic system degeneration and suggests Ret activation as the primary target of GDNF therapy in PD
    • 

    corecore