2,057 research outputs found
Travelling solitons in the parametrically driven nonlinear Schroedinger equation
We show that the parametrically driven nonlinear Schroedinger equation has
wide classes of travelling soliton solutions, some of which are stable. For
small driving strengths nonpropogating and moving solitons co-exist while
strongly forced solitons can only be stably when moving sufficiently fast.Comment: The paper is available as the JINR preprint E17-2000-147(Dubna,
Russia) and the preprint of the Max-Planck Institute for the Complex Systems
mpipks/0009011, Dresden, Germany. It was submitted to Physical Review
D-concurrence bounds for pair coherent states
The pair coherent state is a state of a two-mode radiation field which is
known as a state with non-Gaussian wave function. In this paper, the upper and
lower bounds for D-concurrence (a new entanglement measure) have been studied
over this state and calculated.Comment: 11 page
Experimental realization of the one qubit Deutsch-Jozsa algorithm in a quantum dot
We perform quantum interference experiments on a single self-assembled
semiconductor quantum dot. The presence or absence of a single exciton in the
dot provides a qubit that we control with femtosecond time resolution. We
combine a set of quantum operations to realize the single-qubit Deutsch-Jozsa
algorithm. The results show the feasibility of single qubit quantum logic in a
semiconductor quantum dot using ultrafast optical control.Comment: REVTex4, 4 pages, 3 figures. Now includes more details about the
dephasing in the quantum dots. The introduction has been reworded for
clarity. Minor readability fixe
Copper-catalysed enantioselective stereodivergent synthesis of amino alcohols
The chirality, or ‘handedness’, of a biologically active molecule can alter its physiological properties. Thus it is routine procedure in the drug discovery and development process to prepare and fully characterize all possible stereoisomers of a drug candidate for biological evaluation. Despite many advances in asymmetric synthesis, developing general and practical strategies for obtaining all possible stereoisomers of an organic compound that has multiple contiguous stereocentres remains a challenge3. Here, we report a stereodivergent copper-based approach for the expeditious construction of amino alcohols with high levels of chemo-, regio-, diastereo- and enantioselectivity. Specifically, we synthesized these amino-alcohol products using sequential, copper-hydride-catalysed hydrosilylation and hydroamination of readily available enals and enones. This strategy provides a route to all possible stereoisomers of the amino-alcohol products, which contain up to three contiguous stereocentres. We leveraged catalyst control and stereospecificity simultaneously to attain exceptional control of the product stereochemistry. Beyond the immediate utility of this protocol, our strategy could inspire the development of methods that provide complete sets of stereoisomers for other valuable synthetic targets.National Institutes of Health (U.S.) (Grant GM-58160
Improving the Performance of Thinning Algorithms with Directed Rooted Acyclic Graphs
In this paper we propose a strategy to optimize the performance of thinning algorithms. This solution is obtained by combining three proven strategies for binary images neighborhood exploration, namely modeling the problem with an optimal decision tree, reusing pixels from the previous step of the algorithm, and reducing the code footprint by means of Directed Rooted Acyclic Graphs. A complete and open-source benchmarking suite is also provided. Experimental results confirm that the proposed algorithms clearly outperform classical implementations
Experimental measurement-based quantum computing beyond the cluster-state model
The paradigm of measurement-based quantum computation opens new experimental
avenues to realize a quantum computer and deepens our understanding of quantum
physics. Measurement-based quantum computation starts from a highly entangled
universal resource state. For years, clusters states have been the only known
universal resources. Surprisingly, a novel framework namely quantum computation
in correlation space has opened new routes to implement measurement-based
quantum computation based on quantum states possessing entanglement properties
different from cluster states. Here we report an experimental demonstration of
every building block of such a model. With a four-qubit and a six-qubit state
as distinct from cluster states, we have realized a universal set of
single-qubit rotations, two-qubit entangling gates and further Deutsch's
algorithm. Besides being of fundamental interest, our experiment proves
in-principle the feasibility of universal measurement-based quantum computation
without using cluster states, which represents a new approach towards the
realization of a quantum computer.Comment: 26 pages, final version, comments welcom
Highly Diastereo- and Enantioselective CuH-Catalyzed Synthesis of 2,3-Disubstituted Indolines
A diastereo- and enantioselective CuH-catalyzed method for the preparation of highly functionalized indolines is reported. The mild reaction conditions and high degree of functional group compatibility as demonstrated with substrates bearing heterocycles, olefins, and substituted aromatic groups, renders this technique highly valuable for the synthesis of a variety of cis-2,3-disubstituted indolines in high yield and enantioeselectivity.National Institutes of Health (U.S.) (Award GM46059)Danish Council for Independent Research (Postdoctoral Fellowship
New results on solar neutrino fluxes from 192 days of Borexino data
We report the direct measurement of the ^7Be solar neutrino signal rate
performed with the Borexino detector at the Laboratori Nazionali del Gran
Sasso. The interaction rate of the 0.862 MeV ^7Be neutrinos is
49+-3(stat)+-4(syst) counts/(day * 100ton). The hypothesis of no oscillation
for ^7Be solar neutrinos is inconsistent with our measurement at the 4sigma
level. Our result is the first direct measurement of the survival probability
for solar nu_e in the transition region between matter-enhanced and
vacuum-driven oscillations. The measurement improves the experimental
determination of the flux of ^7Be, pp, and CNO solar nu_e, and the limit on the
magnetic moment of neutrinos
Thermal Casimir effect in ideal metal rectangular boxes
The thermal Casimir effect in ideal metal rectangular boxes is considered
using the method of zeta functional regularization. The renormalization
procedure is suggested which provides the finite expression for the Casimir
free energy in any restricted quantization volume. This expression satisfies
the classical limit at high temperature and leads to zero thermal Casimir force
for systems with infinite characteristic dimensions. In the case of two
parallel ideal metal planes the results, as derived previously using thermal
quantum field theory in Matsubara formulation and other methods, are reproduced
starting from the obtained expression. It is shown that for rectangular boxes
the temperature-dependent contribution to the electromagnetic Casimir force can
be both positive and negative depending on side lengths. The numerical
computations of the scalar and electromagnetic Casimir free energy and force
are performed for cubesComment: 10 pages, 4 figures, to appear in Europ. Phys. J.
- …