58 research outputs found

    Lithospheric Xenoliths from the Marie Byrd Land Volcanic Province, West Antarctica

    No full text
    Studies of the Earths lithosphere, and particularly the lower crust, have in the past relied on geophysical methods, and on geochemical studies of granulite terrains exposed at the surface. Geophysical studies can not evaluate the compositions to any large extent. Granulite terrains typically represent ancient rather than present day sections, have invariably suffered retrograde metamorphism, and have been affected by fluids during uplift. More recently, studies of lithospheric xenoliths (fragments of the lithosphere brought to the surface by entraining (typically alkaline) melts) have been used to study the composition of, and processes influencing, the lithosphere. Xenoliths have the advantage of representing relatively unaltered and young fragments of the lithosphere, and together with other studies have added much to our understanding of the Earths composition and processes. The study of the lithosphere in Marie Byrd Land (MBL), West Antarctica, is complicated by the difficult access and harsh climate of the region. Geophysical studies are limited, and deep crustal exposures are entirely absent. In an attempt to study the composition and structure of the MBL lithosphere, xenoliths were collected from various volcanic edifices in MBL, including the volcanoes of the Executive Committee Range (ECR), and the USAS Escarpment in central MBL, and Mount Murphy on the Walgreen coast. The xenolith suite consists of peridotites, pyroxenites and granulites, spanning a vertical section from upper mantle to lower crust, that are in pristine condition, due to the arid Antarctic conditions. The peridotite suite from MBL consists of spinel Iherzolites from Mounts Hampton and Cumming in the ECR, the USAS Escarpment, and Mount Murphy. Cr-diopside rich peridotites also occur at Mounts Hampton and Murphy, indicating a more chemically diverse upper mantle in these regions (e.g. Mg# 75-92 in Cr-diopside rich peridotites compared to Mg# 87-92 in spinel Iherzolites). REE contents of the peridotites vary from LREE-depleted (up to 0.293 (La/Yb)n in USAS Escarpment peridotites) to LREE-enriched (up to 10.015 (La/Yb)n in Mount Hampton peridotites), further indicating the extreme heterogeneity of the MBL upper mantle. Lower crustal xenoliths from Mounts Sidley and Hampton in the ECR, and from Mount Murphy have meta-igneous textures ranging from pyroxenite to gabbro. They consist of varying amounts of olivine, clinopyroxene, orthopyroxene, plagioclase and spinels; garnet is entirely absent. Orthopyroxene is absent in Mount Sidley xenoliths, whereas olivine is rare in Mount Hampton xenoliths. Mineral P-T equilibria indicate crystallisation of Mounts Sidley and Murphy pyroxenites at lower levels (7-11 kb and 6.5-12 kb respectively) than the granulites (3-5.5 kb and 3-9 kb), with Mount Hampton pyroxenites (6-7.5 kb) and granulites (5.5-8.5 kb) crystallising at similar crustal levels. High temperatures of equilibration (> 1000 [degrees] C) are consistent with a rift-like geotherm in the MBL lithosphere. Whole rock composition of the lower crustal xenoliths is controlled by the mineral assemblage, reflecting their origin as mafic cumulate rocks. Elements that partition readily into the xenolith mineral assemblage are present in higher abundances (e.g. up to 1700 ppm Sr in plagioclase rich xenoliths, and 3745 ppm Cr in clinopyroxene rich pyroxenites) than elements that do not (e.g. Rb 19.53) approaching HIMU composition, sourced from the inferred mantle plume. The composition of the infiltrating melts has also evolved, by percolative fractional crystallisation in the lower crust. The chemical heterogeneity detected in the MBL lower crust indicates a lower crustal discontinuity in the ECR, between Mount Sidley and Mount Hampton, here termed the ECR lower crustal discontinuity. Granulites from Mount Sidley are similar in composition to granulites from the Transantarctic Mountains (TM) in the McMurdo Sound region, Mount Ruapehu and Fiordland (New Zealand). Granulites from Mount Hampton are similar in composition to granulites from Mount Murphy, and the Ross Embayment (RE). These groups have been termed the TM Group and the RE Group respectively. The compositional similarity of granulites in each group may indicate the derivation of the lower crust in these regions from similar melts, and possibly indicate their juxtaposition as parts of the Gondwana supercontinent. The mafic cumulate character of the xenolith suite is inferred to represent original oceanic crust, and a model for the growth of the crust since its formation in latest pre-Cambrian - early Cambrian is presented here

    Discovery of the largest historic silicic submarine eruption

    Get PDF
    It was likely twice the size of the renowned Mount St. Helens eruption of 1980 and perhaps more than 10 times bigger than the more recent 2010 Eyjafjallajökull eruption in Iceland. However, unlike those two events, which dominated world news headlines, in 2012 the daylong submarine silicic eruption at Havre volcano in the Kermadec Arc, New Zealand (Figure 1a; ~800 kilometers north of Auckland, New Zealand), passed without fanfare. In fact, for a while no one even knew it had occurred

    Early evolution of a young back-arc basin in the Havre Trough

    Get PDF
    Back-arc basins are found at convergent plate boundaries. Nevertheless, they are zones of significant crustal extension that show volcanic and hydrothermal processes somewhat similar to those of mid-ocean ridges. Accepted models imply the initial rifting and thinning of a pre-existing volcanic arc until seafloor spreading gradually develops over timescales of a few million years. The Havre Trough northeast of New Zealand is a unique place on Earth where the early stages of back-arc basin formation are well displayed in the recent geological record. Here we present evidence that, in this region, rifting of the original volcanic arc occurred in a very narrow area about 10–15 km wide, which could only accommodate minimal stretching for a very short time before mass balance required oceanic crustal accretion. An initial burst of seafloor spreading started around 5.5–5.0 million years ago and concluded abruptly about 3.0–2.5 million years ago, after which arc magmatism dominated the crustal accretion. The sudden transition between these different tectonomagmatic regimes is linked to trench rollback promoted by gradual sinking of the subducting lithosphere, which could have diverted the arc flux outside the region of seafloor spreading and induced the vertical realignment of surface volcanism with the source of arc melts at depth

    Ar-Ar age constraints on the timing of Havre Trough opening and magmatism

    Get PDF
    The age and style of opening of the Havre Trough back-arc system is uncertain due to a lack of geochronologic constraints for the region. 40Ar/39Ar dating of 19 volcanic rocks from across the southern Havre Trough and Kermadec Arc was conducted in three laboratories to provide age constraints on the system. The results are integrated and interpreted as suggesting that this subduction system is young (<2 Ma) and coeval with opening of the continental Taupo Volcanic Zone of New Zealand. Arc magmatism was broadly concurrent across the breadth of the Havre Trough

    The geochemistry and petrogenesis of Carnley Volcano, Auckland Islands, SW Pacific

    Get PDF
    Intraplate volcanism across Zealandia, South Eastern Australia, the Ross Sea Embayment and Marie Byrd Land in Antarctica define a magmatic province characterised by basalts with elevated 206Pb/204Pb (18.9–22.5), 87Sr/86Sr = ∼0.7035, Light Rare Earth enrichment [(Ce/Yb)n > 10], and convex-up mantle normalised incompatible multi-element patterns, peaking at Nb-Ta, with negative K and Pb anomalies. Trace element abundances and ratios (e.g. Zr/Nb, Y/Zr) resemble Ocean Island Basalts (OIB), distinct from Mid-Ocean Ridge Basalt (MORB), suggesting derivation from OIB-like reservoirs. Our preferred scenario envisages partial melting across the garnet-spinel stability fields involving asthenospheric and lithospheric mantle components. Melts accumulate in a column where the deep (asthenospheric) source is PM and the shallower source a melange of PM and subcontinental lithospheric mantle (DMM+1) enriched by carbonatite. Evolution of primary and near-primary magmas is controlled by olivine + clinopyroxene fractionation. Trachybasalts, trachytes and rhyolites show isotopic evidence for interaction with continental crust

    Dynamics of deep submarine silicic explosive eruptions in the Kermadec arc, as reflected in pumice vesicularity textures

    Get PDF
    Despite increasing recognition of silicic pumice-bearing deposits in the deep marine environment, the processes involved in explosive silicic submarine eruptions remain in question. Here we present data on bubble sizes and number densities (number of bubbles per unit of melt matrix) for deep submarine-erupted pumices from three volcanoes (Healy, Raoul SW and Havre) along the Kermadec arc (SW Pacific) to investigate the effects of a significant (>~1 km) overlying water column and the associated increased hydrostatic pressure on magma vesiculation and fragmentation. We compare these textural data with those from chemically similar, subaerially erupted pyroclasts from nearby Raoul volcano as well as submarine-erupted ‘Tangaroan’ fragments derived by non-explosive, buoyant detachment of foaming magma from Macauley volcano, also along the Kermadec arc. Deep submarine-erupted pumices are macroscopically similar (colour, density, texture) to subaerial or shallow submarine-erupted pumices, but show contrasting microscopic bubble textures. Deep submarine-erupted pyroclasts have fewer small (<10 μm diameter) bubbles and narrower bubble size distributions (BSDs) when compared to subaerially erupted pyroclasts from Raoul (35-55 μm vs. 20-70 μm range in volume based median bubble size, respectively). Bubble number density (BND) values are consistently lower than subaerial-erupted pyroclasts and do not display the same trends of decreasing BND with increasing vesicularity. We interpret these textural differences to result from deep submarine eruptions entering the water column at higher pressures than subaerial eruptions entering the atmosphere (~10 MPa vs. 0.1 MPa for a vent at 1000 mbsl). The presence of an overlying water column acts to suppress rapid acceleration of magma, as occurs in the upper conduit of subaerial eruptions, therefore suppressing coalescence, permeability development and gas loss, amounting to closed-system degassing conditions. The higher confining pressure environment of deep submarine settings hinders extensive post-fragmentation clast expansion, coalescence of bubbles, and thinning of bubble walls, causing clasts to have similar BND values regardless of their vesicularity. Although deep submarine-erupted pyroclasts are closely similar to their subaerial counterparts on the basis of bulk vesicularities and macroscopic appearance, they differ markedly in their microscopic textures, allowing them to be fingerprinted in modern and ancient pumiceous marine sediments

    What lies beneath? Reconstructing the primitive magmas fueling voluminous silicic volcanism using olivine-hosted melt inclusions

    Get PDF
    Understanding the origins of the mantle melts that drive voluminous silicic volcanism is challenging because primitive magmas are generally trapped at depth. The central Taupō Volcanic Zone (TVZ; New Zealand) hosts an extraordinarily productive region of rhyolitic caldera volcanism. Accompanying and interspersed with the rhyolitic products, there are traces of basalt to andesite preserved as enclaves or pyroclasts in caldera eruption products and occurring as small monogenetic eruptive centers between calderas. These mafic materials contain MgO-rich olivines (Fo79–86) that host melt inclusions capturing the most primitive basaltic melts fueling the central TVZ. Olivine-hosted melt inclusion compositions associated with the caldera volcanoes (intracaldera samples) contrast with those from the nearby, mafic intercaldera monogenetic centers. Intracaldera melt inclusions from the modern caldera volcanoes of Taupō and Okataina have lower abundances of incompatible elements, reflecting distinct mantle melts. There is a direct link showing that caldera-related silicic volcanism is fueled by basaltic magmas that have resulted from higher degrees of partial melting of a more depleted mantle source, along with distinct subduction signatures. The locations and vigor of Taupō and Okataina are fundamentally related to the degree of melting and flux of basalt from the mantle, and intercaldera mafic eruptive products are thus not representative of the feeder magmas for the caldera volcanoes. Inherited olivines and their melt inclusions provide a unique “window” into the mantle dynamics that drive the active TVZ silicic magmatic systems and may present a useful approach at other volcanoes that show evidence for mafic recharge

    The largest deep-ocean silicic volcanic eruption of the past century

    Get PDF
    © The Author(s), 2018. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Science Advances 4 (2018): e1701121, doi:10.1126/sciadv.1701121.The 2012 submarine eruption of Havre volcano in the Kermadec arc, New Zealand, is the largest deep-ocean eruption in history and one of very few recorded submarine eruptions involving rhyolite magma. It was recognized from a gigantic 400-km2 pumice raft seen in satellite imagery, but the complexity of this event was concealed beneath the sea surface. Mapping, observations, and sampling by submersibles have provided an exceptionally high fidelity record of the seafloor products, which included lava sourced from 14 vents at water depths of 900 to 1220 m, and fragmental deposits including giant pumice clasts up to 9 m in diameter. Most (>75%) of the total erupted volume was partitioned into the pumice raft and transported far from the volcano. The geological record on submarine volcanic edifices in volcanic arcs does not faithfully archive eruption size or magma production.This research was funded by Australian Research Council Postdoctoral fellowships (DP110102196 and DE150101190 to R. Carey), a short-term postdoctoral fellowship grant from the Japan Society for the Promotion of Science (to R. Carey), National Science Foundation grants (OCE1357443 to B.H., OCE1357216 to S.A.S., and EAR1447559 to J.D.L.W.), and a New Zealand Marsden grant (U001616 to J.D.L.W.). J.D.L.W. and A.M. were supported by a research grant and PhD scholarship from the University of Otago. R.W. was supported by NIWA grant COPR1802. J.D.L.W. and F.C.-T. were supported by GNS Science grants CSA-GHZ and CSA-EEZ. M.J. was supported by the U.S. Department of Defense (DoD) through the National Defense Science and Engineering Graduate Fellowship (NDSEG) Program

    Subduction of the oceanic Hikurangi Plateau and its impact on the Kermadec arc

    Get PDF
    Large igneous province subduction is a rare process on Earth. A modern example is the subduction of the oceanic Hikurangi Plateau beneath the southern Kermadec arc, offshore New Zealand. This segment of the arc has the largest total lava volume erupted and the highest volcano density of the entire Kermadec arc. Here we show that Kermadec arc lavas south of B32°S have elevated Pb and Sr and low Nd isotope ratios, which argues, together with increasing seafloor depth, forearc retreat and crustal thinning, for initial Hikurangi Plateau—Kermadec arc collision B250 km north of its present position. The combined data set indicates that a much larger portion of the Hikurangi Plateau (the missing Ontong Java Nui piece) than previously believed has already been subducted. Oblique plate convergence caused southward migration of the thickened and buoyant oceanic plateau crust, creating a buoyant ‘Hikurangi’ me´lange beneath the Moho that interacts with ascending arc melts
    corecore