
ARTICLE

Received 1 Apr 2014 | Accepted 6 Aug 2014 | Published 17 Sep 2014

Subduction of the oceanic Hikurangi Plateau
and its impact on the Kermadec arc
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Large igneous province subduction is a rare process on Earth. A modern example is the

subduction of the oceanic Hikurangi Plateau beneath the southern Kermadec arc, offshore

New Zealand. This segment of the arc has the largest total lava volume erupted and the

highest volcano density of the entire Kermadec arc. Here we show that Kermadec arc lavas

south of B32�S have elevated Pb and Sr and low Nd isotope ratios, which argues, together

with increasing seafloor depth, forearc retreat and crustal thinning, for initial Hikurangi

Plateau—Kermadec arc collision B250 km north of its present position. The combined data

set indicates that a much larger portion of the Hikurangi Plateau (the missing Ontong Java

Nui piece) than previously believed has already been subducted. Oblique plate convergence

caused southward migration of the thickened and buoyant oceanic plateau crust, creating a

buoyant ‘Hikurangi’ mélange beneath the Moho that interacts with ascending arc melts.
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T
he formation of large igneous provinces (LIPs) represents
one of the most extreme volcanic events on Earth,
characterized through eruption of vast amounts of lava

in a geologically short period1. Oceanic LIPs either accrete and
obduct, adding to the continental landmass2–4 or in rare cases
recycle back into the Earth’s mantle via subduction. Known
examples of oceanic plateau subduction include the Cretaceous
Caribbean Plateau, accreting at and subducting/underthrusting
beneath the Greater Antilles on the Caribbean Plate and the
south-eastern part of the Ontong Java Plateau presently
subducting beneath the Solomon Islands at the north Solomon–
Kilinailau trench. Both examples involve complex tectonic
processes, such as impact-related accretion of oceanic plateau
crust and the change of subduction polarity5–8. However,
subduction of one tectonic plate beneath another has driven
geochemical cycling and the formation of the Earth’s crust since
B3,500 Myr9. It has been known for decades that volcanic arcs
are the result of that subduction process, as the descending plate
dehydrates, causing partial melting in the overlying mantle.
Consequently, arc lavas carry geochemical signals from the
subducting plate, which includes the sediment cover, altered
oceanic crust and serpentinized mantle10–12. In addition, signals
of subducting intraplate seamounts (or LIPs) with geochemical
compositions different to the subarc mantle can be traced in arc
lavas13,14. Tracing the subduction cycle of such geological features
provides an improved understanding of mantle-flow pattern and
may explain the variability in eruptive behaviour and style of
hydrothermal activity on the overriding plate15.

A globally unique example of single polarity oceanic plateau
subduction is the Hikurangi Plateau presently subducting beneath
the southern Kermadec arc and the North Island of New Zealand
(Fig. 1)16–19. Subduction of 15–23-km thick, altered and buoyant
Hikurangi Plateau crust, that is host to large seamounts19,20, must
not only have a strong effect on tectonic erosion and the local plate
stress regime, but also on volatile element budgets in the overlying
mantle. This in turn suggests significant implications for the
petrogenesis and eruptive behaviour of arc volcanoes, fluid-flow in
their associated hydrothermal systems, and element transfer to the
oceans. The Hikurangi Plateau is believed to have formed as part
of Ontong Java Nui during the ‘greater Ontong Java event’
B120 Myr ago, one of the world’s most extreme volcanic events,
covering B1% of the Earth’s surface18,21,22. As noted by Chandler
et al.22, a large part of the Hikurangi Plateau connecting its western
and northern margin with the Ontong Java and Manihiki plateaus
either does not exist or has already been subducted.

In this study we present new Sr-, Nd-, and Pb-isotope data
from Kermadec arc and Hikurangi Plateau lavas (Fig. 1) which,
when combined with published isotope and satellite gravity data
and bathymetry, show large-scale geochemical and geophysical
variations along the length of the Kermadec arc, enabling us to
better understand the processes related to LIP subduction and
thus identifying the ‘missing’ piece of Ontong Java Nui.

Results
Geological background. The B1,300-km long, intra-oceanic,
mostly submarine Kermadec arc system results from Pacific–
Australian Plate convergence and forms the southern part of the
Tonga–Kermadec arc system that extends B2,500 km north of
New Zealand. The Kermadec arc is one of the worlds most vol-
canically and hydrothermally active arc systems, with B75% of the
33 major volcanoes being hydrothermally active15. Subduction
velocities decrease from the fastest convergence rates on Earth
of B24 cm per year at the northern end of the Tonga arc system23,
to B5 cm per year along the southern Kermadec arc. The sediment
veneer on the incoming Pacific Plate, changes in thickness and

composition from B200 m of pelagic sediments near B25�S (that
is, DSDP Site 204; for example, ref. 24; Fig. 1) to Z500 m of
predominantly terrigeneous sediments near B36�S (ref. 25).

North of B28.5�S, the Kermadec arc front volcanoes are
located in the Havre Trough backarc immediately west of the
relatively old and inactive Kermadec Ridge before they merge
with the Kermadec Ridge between B29�S and B32�S. At B32�S,
the arc front shows a sudden B15 km offset into the Havre
Trough accompanied by B500 m average seafloor deepening15,26.
South of 32�S, the majority of the volcanic front volcanoes are
located behind the Kermadec Ridge and the forearc narrows by
B75 km from a gently trenchward dipping and B200-km wide
to B125-km wide27. These authors also inferred a westward
trench retreat of r50 km, and that the forearc inner trench
margin south of 32�S subsided by r4 km, summing up to a loss
in volume of B400 km3 compared with the north.

South of B35�S, subduction of the Cretaceous Hikurangi
Plateau beneath the southern Kermadec arc is accompanied by an
average shoaling of B500 m of the Kermadec forearc, arc front
and Havre Trough backarc15,28,29. The plateau hosts r2,900 m
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Figure 1 | Bathymetric map of the Kermadec arc—Havre Trough backarc

system. Symbols mark the Kermadec arc volcanic centre locations

discussed in this paper, with coloured symbols used for the different

volcanic centres from which isotopic data are available; the grey symbols

are for volcanoes for which no isotope data are available. White stars mark

the location of additional Hikurangi Plateau samples used in this study. The

numbers in the arrows are subduction velocities, as in ref. 23. For the

purpose of this study we separate the Kermadec arc into three segments on

the basis of the location of the volcanic front behind or on the Kermadec

Ridge: (1) the northern Kermadec arc (NKA) between B25� and 28.5�S,

(2) the mid Kermadec arc (MKA) between B29 and B32�S and (3) the

southern Kermadec arc (SKA) between 32� and 37�S. DSDP, Deep Sea

Drilling Programme.
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high ridge-like seamounts and guyots with basal diameters
r25 km. Two-dimensional gravity modelling and estimates from
active seismic source refraction studies suggests a Hikurangi
Plateau crustal thickness of 15–23 km compared with a 4–6 km
thick Pacific oceanic crust to the north18,30,31. Both these
techniques assume that the mantle is marked by either Vp
seismic velocities 48 km s� 1 or densities 43.0� 103 kg m� 3.
Reyners et al.20 however identified a seismically active 35-km
thick layer beneath the upper surface of the subducting Hikurangi
Plateau. The presence of 48.5 km s� 1 velocities at the base of the
seismically active zone led Reyners et al.20 to propose an eclogite
layer to the plateau ‘crust’, doubling the thickness modelled by
Davy et al.18 and Scherwarth et al.30

Geochemistry. Lava compositions from the Kermadec arc vol-
canoes range from basalt to rhyolite within the low-K tholeiitic to
medium-K calcalkaline series (e.g. refs 29,32), following the rock
classification by Le Maitre33 and show typical subduction zone
enrichments of elements mobile in aqueous fluids (for example,
Rb, Ba, U, Pb, Sr) and depletions in Nb when compared with
mid-ocean ridge basalts (MORB34). Of all the Kermadec arc front
lavas, those from the northern Kermadec arc volcanoes between
26 and 28�S show the least radiogenic values for Pb and Sr
(for example, 206Pb/204PbAvg¼ 18.67; 87Sr/86SrAvg¼ 0.7034; see
Table 1 for Sr-, Nd- and Pb-isotope data) and fall between Pacific
MORB and sediments drilled at DSDP Site 204 (refs 24,35;
Fig. 2a,c). The northern Kermadec arc lavas are also characterized

Table 1 | Sr–Nd–Pb-isotope data from selected Kermadec arc volcanic centres and the Rapuhia Scarp of the Hikurangi Plateau

Sample
number

Volcano Rock-
type

Latitude Longitude Water depth
(m)

87Sr/86Sr 143Nd/
144Nd

206Pb/
204Pb

207Pb/
204Pb

208Pb/
204Pb

Kermadec Arc volcanic centres
P72388* Hinepuia B 26.41�S 177.28�W 945 0.703369 0.513069 18.697 15.575 38.374
P72356 Hinepuia A 26.40�S 177.25�W 358 0.703464 0.513071 18.708 15.571 38.384
P72391 Hinepuia D 26.41�S 177.28�W 945 0.703576 0.513071 18.701 15.574 38.387
P72358 Hinepuia D 26.40�S 177.25�W 358 0.703529 0.513074 18.709 15.572 38.387
P72403 Hinepuia R 26.39�S 177.28�W 953 0.703569 0.513066 18.701 15.570 38.374
P72360 Hinepuia A 26.40�S 177.25�W 358 0.703417 0.513054 18.703 15.573 38.393
P72404 Hinepuia R 26.39�S 177.28�W 953 0.703418 0.513041 18.592 15.579 38.280
P72428 Rakahore D 26.81�S 177.40�W 1,053 0.703408 0.513121 18.657 15.573 38.369
P72442 Rakahore R 26.84�S 177.43�W 690 0.703368 0.513086 18.690 15.576 38.393
P72422 Rakahore D 26.81�S 177.41�W 786 0.703388 0.513075 18.693 15.575 38.393
P72461 Gamble R 27.21�S 177.44�W 328 0.703437 0.513106 18.661 15.577 38.381
P72462 Gamble R 27.21�S 177.44�W 328 0.703423 0.513116 18.660 15.577 38.379
P72448 Gamble R 27.20�S 177.41�W 620 0.703735 0.513097 18.654 15.574 38.368
P72467 Putoto B 27.91�S 177.61�W 316 0.703475 0.513110 18.667 15.576 38.369
P72476 Putoto BA 27.85�S 177.61�W 580 0.703405 0.513096 18.666 15.576 38.355
P72479 Putoto D 27.85�S 177.61�W 580 0.703478 0.513104 18.660 15.572 38.348
P72483 Putoto BA 27.85�S 177.61�W 580 0.703431 0.513101 18.661 15.571 38.350
P72490 Putoto B 27.85�S 177.61�W 580 0.703369 0.513093 18.621 15.566 38.308
P72495 Hinetapeka D 28.59�S 177.82�W 634 0.703767 0.513064 18.682 15.571 38.436
P72498 Hinetapeka BA 28.59�S 177.82�W 634 0.703742 0.513037 18.681 15.574 38.432
P72506 Hinetapeka A 28.65�S 177.80�W 348 0.703771 0.513068 18.683 15.572 38.436
P72511 Hinetapeka BA 28.65�S 177.81�W 330 0.703776 0.513072 18.688 15.578 38.446
P72497 Hinetapeka D 28.59�S 177.82�W 890 0.703744 0.513065 18.682 15.572 38.442
T 46-03w Havre B 31.09�S 179.06�W 941 0.703708 — 18.757 15.597 38.556
T 51-01 Havre D 31.14�S 179.01�W 956 0.703707 0.512990 18.770 15.604 38.594
T 34-01 Haungaroa BA 32.62�S 179.67�W 815 0.703909 0.513013 18.923 15.614 38.717
T 37-03 Haungaroa B 32.60�S 179.64�W 1,167 0.703889 0.513031 18.934 15.617 38.733
T 27-04 Kuiwai BA 33.16�S 179.96�W 640 0.703813 — 18.938 15.623 38.758
T 20-02 Ngatoir. BA 33.74�S 179.83�E 555 0.703906 0.513057 18.867 15.616 38.701
T 24-08 Ngatoir. BA 33.75�S 179.81�E 1,500 0.703896 0.513140 18.860 15.611 38.687
T 09-01 Sonne D 34.07�S 179.59�E 1,040 0.703971 0.513012 18.862 15.632 38.737
T 88-01 Sonne BA 34.02�S 179.56�E 1,271 0.703956 — 18.850 15.614 38.675
T 90-01 Sonne B 34.08�S 179.48�E 2,405 0.703898 0.512944 18.848 15.614 38.672
T 91-04 Sonne B 34.12�S 179.43�E 1,841 0.704296 0.512834 18.862 15.640 38.750
T 05-01 Kibblew. D 34.57�S 179.27�E 1,174 0.703777 0.512949 18.832 15.611 38.638
T 94-02 Kibblew. B 34.29�S 179.24�E 1,438 0.703246 0.513031 18.788 15.585 38.522
T 98-02 Kibblew. B 34.69�S 179.30�E 1,642 0.703955 0.513012 18.869 15.607 38.610

Hikurangi Plateauz

34-1 RS B 35.99�S 178.52�W 5,918 0.705057 0.512964 19.171 15.543 38.384
34-4y RS B 35.99�S 178.52�W 5,918 0.704586 0.512954 19.546 15.574 38.405
34-11 RS G 35.99�S 178.52�W 5,918 0.704208 0.512945 19.680 15.550 38.445
36-1y RS B 36.03�S 178.28�W 6,001 0.705308 0.512821 18.578 15.531 38.149
36-4 RS Do 36.03�S 178.28�W 6,001 0.703742 0.512925 19.372 15.634 38.757
38-1y RS B 36.12�S 178.39�W 5,868 0.705477 0.512908 18.757 15.617 38.520
38-3y RS G 36.12�S 178.39�W 5,868 0.703924 0.512927 19.313 15.600 38.423

B, Basalt; BA, Basaltic Andesite; D, Dacite; Do, Dolerite; G, Gabbro; Kibblew., Kibblewhite; Ngatoir., Ngatoirangi; R, Rhyolite.
*Samples recovered during NZAPLUME III and analysed at the University of Melbourne.
wSamples recovered during TAN0205 and analysed at GEOMAR.
zSamples recovered during SO168 and analysed at GEOMAR.
yPb double spike; values in Italics from Hoernle et al.19
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by Pacific MORB-like (most radiogenic) Nd isotopic
compositions (143Nd/144NdAvg¼ 0.5131; Fig. 2b). A noticeable
increase in average Pb and Sr isotopic composition to
206Pb/204PbAvg¼ 18.69 and 87Sr/86SrAvg¼ 0.7036, and a
decrease in 143Nd/144NdAvg to 0.51304, is shown by lavas
erupted on the Kermadec Ridge. At B32�S, the arc front lava
Pb and Sr isotopic compositions become significantly more
radiogenic, yet Nd isotope ratios become less radiogenic (for
example, 206Pb/204PbAvg¼ 18.84; 87Sr/86SrAvg¼ 0.7039; 143Nd/
144NdAvg¼ 0.512987). South of B35�S above the presently
subducting Hikurangi Plateau, the average Pb-isotope
composition is variable but on average slightly less radiogenic
than in lavas from adjacent volcanoes further north (for example,
206Pb/204PbAvg¼ 18.77), together with slightly higher Sr
(87Sr/86SrAvg¼ 0.7042) and Nd isotope ratios (143Nd/
144NdAvg¼ 0.512988; Fig. 2).

Discussion
Most lavas from the Kermadec arc volcanic centres show MORB-
like less fluid mobile and conservative trace element ratios, but
generally high element ratios tracing slab-derived fluids (La/
Ybo1; Ba/Tho1,200; refs 24,34). The Sr and Pb isotopic
composition of the northern Kermadec arc lavas have
previously been interpreted to show the effects of a MORB-type
mantle wedge with the addition of B1–4% subducted sediment-
and altered oceanic crust-derived, fluid-transported isotope
signature. Conversely, mantle wedge heterogeneity has been
proposed to explain the variations in much less fluid-mobile Nd
isotope ratios in northern and southern Kermadec arc lavas34,36–
38. The generally elevated Sr and Pb, and slightly lower Nd
isotope ratios in lavas from mid Kermadec arc volcanic centres
located on the Kermadec Ridge have been attributed to (1) the
interaction of ascending magmas with older Kermadec Ridge
crust with higher Pb and Sr, but lower Nd isotopic values
compared with the Havre Trough backarc crust35,37 and (2) the
input of slab-derived fluids carrying more radiogenic Pb and Sr
isotope signatures34. Despite their emplacement behind the
Kermadec Ridge on Havre Trough backarc crust, the southern
Kermadec arc lavas also show elevated Pb and Sr, and low Nd
isotopic compositions suggesting an isotopically enriched source
beneath these volcanoes. Previously, the increase in Pb and Sr
isotope ratios in the southern Kermadec arc lavas were considered
to be the result of radiogenic New Zealand-derived terrigenous
sediment subduction37. However, some lavas between B32–35�S
show higher 206Pb/204Pb values than local subducting sediment
Pb-isotope compositions (Figs 2a and 3c,d), requiring an
additional high value 206Pb/204Pb component contributing to
the arc lava geochemical compositions. One possible endmember
is the nearby subducting Hikurangi Plateau with its large HIMU-
type (HIMU¼ high-time integrated U/Pb ratio) seamounts (cf.
refs 17,19). Exposure of the B1-km high Rapuhia Scarp (and
deep reaching faults on the Hikurangi Plateau18) and a Z1.5-km
thick layer of sediments/volcaniclastics to seawater alteration for
B120 Myr suggests that parts of the Hikurangi Plateau are more
H2O-rich than ‘normal’ altered oceanic crust (supported by high
and variable contents of large ion lithophile elements17,19).

However, if projected beneath the arc, the Rapuhia Scarp
subducts approximately beneath the Kibblewhite volcanic centre
(B34.2�S; Fig. 1). Subduction of an H2O-rich, buoyant and thus
shallow dipping Hikurangi slab (B20� to B60 km depth39) is
consistent with B500 m shallowing of the bathymetry, suggesting
crustal uplift directly north of Kibblewhite (cf. ref. 15). A more
buoyant slab, which hosts bathymetric anomalies (such as LIPs)
reducing the overall slab density and thus leading to shallow
subduction, has also been predicted by numerical models40. The
colocated change of the arc lava isotope composition, forearc
subsidence, arc front offset into the backarc and deepening
seafloor morphology together indicate that the initial Hikurangi
Plateau–arc collision could have occurred B250 km further north
near B32�S (refs 15,27).

Supporting evidence for initial Hikurangi subduction B250 km
further north comes from a satellite-derived Bouguer gravity
anomaly of up to B360 mGal between 32�S and 34.5�S,
compared with a regional value of B240 mGal north and south
of the anomaly (Fig. 4a), suggesting shallow mantle, or dense
mid-lower crust, occurs beneath this region. Two-dimensional
gravity modelling along a transect parallel to the Kermadec arc
front, from B30�S to B35.2�S, indicates maximum crustal
thinning at B32.5�S, gradually thickening both to the north and
south from this point. This region of crustal thinning coincides
with deeper (by r500 m) bathymetry (Figs 1 and 4b). The sub-
duction of major ridges or seamounts is one of the most effective
mechanisms to increase tectonic erosion41. We can therefore
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assume that the subduction of thickened plateau crust, hosting
large seamounts, will significantly increase the rate of tectonic
erosion. Much of the margin collapse following removal of
plateau support accompanying southward migration of the
plateau subduction interface will also enhance effective tectonic
erosion27. These effects will cause crustal thinning in addition to
normal tectonic erosion resulting in the formation of a thick
subduction channel mélange at the slab–mantle wedge interface.
The apparent increase in crustal thickness towards the south
from c. 32.5�, implied by the two-dimensional gravity model
(cf. Fig. 4), is likely instead to be partly attributable to dynamic
support of the margin (particularly south of 34�) by the
subducting buoyant Hikurangi Plateau. Moving southward
there is a gradual decrease in the spacing of volcanic edifices
along-strike, from one edifice every B55 km north of B32�S, to
one edifice every B45 km between B32� to 35�S and finally to
one edifice every B30 km south of 35�S above the present-day
subducting Hikurangi Plateau (cf. ref. 15). This decrease in
spacing between volcanic centres is accompanied by an increase
in the total volume of lava erupted onto the seafloor from
B830 km3 between 34�S and 32�S to B1,200 km3 between
B35�S and 37�S (ref. 29), suggesting not only a relation
between Hikurangi Plateau subduction and enhanced magma
production, but also an impact on the stress field. That is,
enhanced fracturing of the overlying plate, creating relatively
more zones of weakness, such as faults in the crust along which
magmas are channelled and can rise towards the surface.
Dehydration of 15–23-km thick and more H2O-rich Hikurangi
crust will significantly increase the fluid flux from the subducting
plate, thus forming a more hydrated overlying mantle wedge than
to the north.

Erosion of thickened Hikurangi crust and seamounts and
subducted sediments will create a buoyant, H2O-rich ‘Hikurangi

mélange’, containing a mixture of Hikurangi Plateau basement
and seamount material embedded in a metasedimentary matrix
including fragments of the overlying crust (cf. Fig. 5). Using a
Hikurangi Plateau isotopic composition of 206Pb/204Pb¼ 19.35;
207Pb/204Pb¼ 15.62; 208Pb/204Pb¼ 38.74; 87Sr/86Sr¼ 0.7037 and
143Nd/144Nd¼ 0.51295 (see Fig. 3 caption for details), the Pb and
Sr isotope signatures in lavas from volcanoes located between
B32 and 35�S can be explained by mixing depleted mantle wedge
melts with B3–10% of subducted sediment and B20–55%
Hikurangi components (Fig. 3). Given that the Kermadec arc is
one of the oldest and coldest subduction zones globally with an
estimated slab surface temperature of B745–760 �C beneath
B30.2 to 37.9�S (refs 37,42), it is unlikely that significant slab
melting will occur. Therefore, although Pb and Sr are mobile in
aqueous fluids, the decrease in 143Nd/144Nd values cannot be
explained through a subducting slab-derived fluid flux alone (due
to low Nd mobility in aqueous fluids at temperatures r800� (at
4 GPa; ref. 43). Previously, variations in trace element ratios and
isotope compositions of rather conservative elements in southern
Kermadec arc lavas were attributed to ambient mantle hetero-
geneity predating the geochemical imprint of the subducting
slab36. Although ambient mantle wedge heterogeneities (and/or
the involvement of deep crustal or lithospheric mantle fragments
of rifted Gondwana continental material) could account for the
observed isotopic Kermadec arc lava heterogeneities, the
simultaneous increase in Pb and Sr but decrease in Nd isotope
values, together with the aforementioned observations, plausibly
argues for Hikurangi Plateau subduction-related processes
causing the observed isotopic changes south of B32�S. A
similar input of an OIB-type slab signature, including a positive
gravity anomaly (GH2; Fig. 4a) can be observed further north,
where the subduction of the Louisville Seamount Chain affects
the central Tonga–Kermadec arc14.

Hikurangi Plateau

Hikurangi Plateau

Hikurangi Pateau

HS

HS

HS
Subducting 
sediments

Subducting 
sediments

Subducting 
sediments

NKA

MKA

NKA

MHT

SHT

3%

0.5%
1% 10%

1%

10%

1%

10%

1%

10%

0.703

87
S

r/
86

S
r

14
3 N

d/
14

4 N
d

206Pb/204Pb

20
8 P

b/
20

4 P
b

20
7 P

b/
20

4 P
b

0.704

0.705

0.706

0.707

0.708

0.709

0.710

18.5 18.7 18.9 19.1 19.3

0.5126

0.5127

0.5128

0.5129

0.5130

0.5131

15.55

15.60

15.65

15.70

18.7 18.9 19.1 19.3 19.5

38.2

38.4

38.6

38.8

39.0

39.2

HS

3%

3%

0.5%

1%

10%

0.5%

Figure 3 | Kermadec arc Isotopic variation. 206Pb/204Pb versus a) 87Sr/86Sr, b) 207Pb/204Pb, c) 143Nd/144Nd and d) 208Pb/204Pb. Fields shown are for

NKA (red), MKA (orange) and SKA (yellow), subducted sediments (red-brown), Hikurangi Plateau (HP; grey) and Hikurangi seamounts (HS; white); MHT,

mid Havre Trough; SHT, southern Havre Trough. Dashed lines with hexagons are mixing calculations between; (1) depleted mantle wedge and subducted

sediments, (2) depleted mantle wedge and Hikurangi Plateau (consisting of 90% average Hikurangi Plateau basement and 10% average Hikurangi

seamounts) and (3) subducted sediments and Hikurangi Plateau. See Supplementary Table 1 for modelling details. Hikurangi Plateau and seamount data are

from refs 17,19, and this study.

NATURE COMMUNICATIONS | DOI: 10.1038/ncomms5923 ARTICLE

NATURE COMMUNICATIONS | 5:4923 | DOI: 10.1038/ncomms5923 | www.nature.com/naturecommunications 5

& 2014 Macmillan Publishers Limited. All rights reserved.

http://www.nature.com/naturecommunications


Tomography results from a trench-perpendicular ocean
bottom seismometer array oriented east-west across the
Kermadec trench to the Havre Trough at B37�S (refs 30,31)
show zones of reduced seismic velocities (that is, Vp
r7.8 km s� 1 compared with Z8 km s� 1 for mantle peridotite)
beneath the arc front MOHO, consistent with Z10% of
serpentenized mantle being present beneath the arc44. A similar
B10-km thick crust–mantle transition layer with lower seismic
velocities (that is, Vp¼ 7.0–7.7 m s� 1) has also been identified
beneath the Izu–Bonin–Mariana and Tonga arcs, interpreted to
be composed of a mixture of crustal and mantle materials45,46.
Likewise, beneath the central Taupo Volcanic Zone, a zone of
reduced seismic velocities of ZVp¼ 7.4 m s� 1 (Vp/Vs¼B1.87)

extends from the Moho to the slab–mantle wedge interface
suggesting diapirically rising hydrated and low density
material47. Lower seismic velocities of Vp¼B7.7, (and
density¼B3.0 g cm� 3; Vp/Vs¼B1.85), which are similar to
the velocities observed at the crust–mantle boundary beneath arcs
have been measured in exhumed subduction mélange rocks with
compositions intermediate between chlorite schists and jadeite (at
T¼ 600 �C and P¼ 2 GPa). Numerical modelling results show
that buoyant cold diapir formation requires B1–10-km thick
mélange layers at the slab surface–mantle wedge interface
(refs 48,49 and references therein). The formation of a more
hydrated Hikurangi mélange above the subducting plateau than
beneath the northern Kermadec arc will reduce the mélange
density. This, in turn, is likely to create more diapirs rising
through mantle wedge and to partially melt via decompression
(Fig. 5). The formation of volatile-rich melts above the subducting
Hikurangi Plateau can therefore explain the higher volcano
density and possibly the formation of large silicic magma
chambers beneath the Taupo Volcanic Zone on the North
Island of New Zealand (cf. ref. 50). The thin crust between 32 and
34.5�S coincides with the occurrence of large volcanoes, lavas from
which show the highest Pb isotopic values, suggesting a high
percentage of a Hikurangi component in the mélange formed
through increased tectonic erosion during early Hikurangi
Plateau subduction. The increasing crustal thickness, 87Sr/86Sr
and 143Nd/144Nd values but general decrease of 206Pb/204Pb south
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Figure 4 | Bouguer gravity anomaly map and two-dimensional gravity

model along the Kermadec arc front. (a) Satellite-altimetry-derived

Bouguer gravity anomaly map of the Kermadec arc system between

B30�S and B36.5�S. Bouguer gravity anomaly is calculated using free air

gravity anomaly (ref. 64, version 18) plus NIWA bathymetry65 and a

2.67� 103 kg m� 3 density for the water body. Upper left corner inset

shows the Bouguer gravity anomaly for the entire arc. Triangles mark the

location of the arc front volcanic centres. White dashed line marks the

location of the along-arc profile shown in Fig. 4b with X and Y being the

start and end points. GH1, gravity high 1; GH2, gravity high 2 (located where

the Louisville seamount chain subducts); LSC, Louisville seamount chain;

OT, Osbourn trough. (b) Two-dimensional gravity model along the

Kermadec arc front. Dark blue represents the upper mantle overlain by

lower crust (brown), upper crust (grey) and seawater (light blue). White

numbers are densities in g cm� 3. White dashed line within the lower crust

marks hypothetical crustal thickness, assuming the addition of dynamic

support of the crust from the buoyant Hikurangi Plateau.
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mélange is subducted to deeper depth, where due to its buoyant behaviour

forms cold diapirs, which rise through mantle wedge and eventually pond

beneath a density barrier, such as the Moho. Because of the dehydration of

the subducting plate during its descent, the arc lavas may already contain a

fluid-derived (mostly Pb and less significant Sr) Hikurangi Plateau

signature. Interaction of melts with the Hikurangi mélange layer at the

Moho can also explain the large-scale variation of 143Nd/144Nd isotope

values not only above the presently subducting Hikurangi Plateau, but also

to the north, where the Kermadec arc crust has been underplated in the
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beneath the Moho and may only occur locally consistent with its formation

through cold diapirs.
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of B35�S indicates the increasing contribution of a sedimentary
component gradually diluting the Hikurangi signature.

We conclude that a geochemically heterogeneous Hikurangi
mélange layer, assimilated by younger ascending, or stagnated
Kermadec arc melts, can explain the observed change in arc lava
geochemical compositions of the southern Kermadec arc lavas.
On the basis of isotopic, bathymetric and gravity variations along
the Kermadec arc, the initial arc–Hikurangi Plateau collision can
be identified at least 250 km north of its present location,
suggesting that a much larger portion of the plateau than
previously estimated has been subducted since 410 Myr (Fig. 6).
The extent of the gap of the Ontong Java Nui super plateau22 and
of the subducted Hikurangi Plateau portion (inferred by
geochemistry, morphology and gravity; Fig. 5) suggests that we
may have identified the missing piece of this super plateau.
Furthermore, we have demonstrated that LIP subduction has
profound implications for fundamental processes occurring at
oceanic arcs, such as increased rates of tectonic erosion and
elevated fluid flux from the subducting slab, which in turn,
influence the eruptive behaviour and possibly the style of
hydrothermal systems at arc volcanoes and the element transfer
into the world’s oceans.

Methods
Sampling. The Kermadec arc volcanic centres between B26�S and 28.6�S
(Hinepuia–Hinetapeka) and between B31�S and 34�S (Havre–Kibblewhite; Fig. 1)
were mapped and sampled during the RV Tangaroa expeditions NZAPLUME III

in 2004 and TAN0205 in 2005 (refs 26,33). Additional samples from the Hikurangi
Plateau (Rapuhia Scarp) were recovered during the R/V Sonne expedition SO168
Zealandia in 2002/2003.

Isotope analyses. For chemical analysis fresh cores of the samples were extracted,
repeatedly washed in deionized water (in an ultrasonic bath) to remove sea salt,
then crushed, handpicked and reduced to powder in an agate mill. Isotope analyses
were conducted at the University of Melbourne and GEOMAR. At the University
of Melbourne between 50 and 100 mg of fresh, clean chips 1–5 mm in diameter
were handpicked for isotopic analysis and then leached in hot 6 N HCl for 30 min
to remove any contaminants. Samples were then washed in ultrapure water and
dissolved in HF/HNO3 acid mixtures. Separation of Pb, Sr and Nd involved
standard ion exchange procedures using Eichron ion specific resins. Analytical
blanks are in all cases insignificant relative to the amount of sample processed and
no blank corrections were made. Separated Sr, Nd, and Pb were run on a Nu
Instruments MC-ICPMS coupled to a CETAC Aridus desolvating nebulizer
operating at a sample uptake rate of B60ml min� 1. Instrumental mass bias was
corrected using an exponential bias law with 87Sr/86Sr normalized to 86Sr/
88Sr¼ 0.1194 and reported relative to NIST SRM 987¼ 0.710250. For Sr-isotopes,
internal precision is typically o0.000015 (2 s.e.) with reproducibility (2 s.d. of
repeat runs) r±0.000040. 143Nd/144Nd was normalized to 146Nd/
145Nd¼ 2.0719425 (equivalent to 146Nd/144Nd¼ 0.7219) and reported relative to
La Jolla Nd reference material¼ 0.511865. Internal precision is typically
o0.000010 (2 s.e.) with reproducibility (2 s.d. of repeat runs) r±0.000020. Pb-
isotope ratios are reported relative to SRM 981 values of 16.935, 15.489, 36.701 with
reproducibility (2 s.d. of repeat runs) r±0.03%. See refs 51,52 for Pb and Sr–Nd
procedures, respectively.

At GEOMAR, leached whole rock powders (6 N HCl at 130 �C for 1 h) were
used for Sr, Nd chemistry and leached rock chips (2 N HCl at room temperature
for 30 min) for Pb. Sample dissolution involved 4 ml conc. Hf and 1.5 ml HNO3 at
150 �C for 48 h in a closed teflon vial, followed by evaporation to dryness, uptake in
6 N HCl and final evaporation to dryness. The element chromatography followed
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established standard procedures53. Isotopic ratios were analysed in static multi-
collection mode on a TRITON (Nd) and MAT262 RPQ2þ (Sr–Pb) thermal
ionization mass spectrometers. Sr and Nd isotopic ratios are normalized within run
to 86Sr/88Sr¼ 0.1194 and 146Nd/144Nd¼ 0.7219, respectively and isotope data
reported relative to NBS987 87Sr/86Sr¼ 0.710250±0.000012 (2 s.d., N¼ 20) and
143Nd/144Nd¼ 0.511850±0.000005 (2 s.d., N¼ 27) for La Jolla. NBS981 gave
206Pb/204Pb¼ 16.898±0.006, 207Pb/204Pb¼ 15.437±0.007, 208Pb/
204Pb¼ 36.527±0.024 (2 s.d., N¼ 125; 2003–2006) and were corrected for mass
bias to our NBS981 double spike values of 206Pb/204Pb¼ 16.9412±0.0021, 207Pb/
204Pb¼ 15.4992±0.0020, 208Pb/204Pb¼ 36.7225±0.0049 (2 s.d., N¼ 69; 2006–
2008). This external mass bias procedure applies to samples 34-11 and 36-4 while
the remaining samples were mass bias corrected by Pb double spike54. Total
chemistry were o100 ng Sr–Nd–Pb and thus considered neglible relative to the
amount of sample.
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