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ABSTRACT
Understanding the origins of the mantle melts that drive voluminous silicic volcanism is 

challenging because primitive magmas are generally trapped at depth. The central Taupō 
Volcanic Zone (TVZ; New Zealand) hosts an extraordinarily productive region of rhyolitic 
caldera volcanism. Accompanying and interspersed with the rhyolitic products, there are 
traces of basalt to andesite preserved as enclaves or pyroclasts in caldera eruption products 
and occurring as small monogenetic eruptive centers between calderas. These mafic materi-
als contain MgO-rich olivines (Fo79–86) that host melt inclusions capturing the most primitive 
basaltic melts fueling the central TVZ. Olivine-hosted melt inclusion compositions associated 
with the caldera volcanoes (intracaldera samples) contrast with those from the nearby, mafic 
intercaldera monogenetic centers. Intracaldera melt inclusions from the modern caldera vol-
canoes of Taupō and Okataina have lower abundances of incompatible elements, reflecting 
distinct mantle melts. There is a direct link showing that caldera-related silicic volcanism 
is fueled by basaltic magmas that have resulted from higher degrees of partial melting of a 
more depleted mantle source, along with distinct subduction signatures. The locations and 
vigor of Taupō and Okataina are fundamentally related to the degree of melting and flux of 
basalt from the mantle, and intercaldera mafic eruptive products are thus not representative 
of the feeder magmas for the caldera volcanoes. Inherited olivines and their melt inclusions 
provide a unique “window” into the mantle dynamics that drive the active TVZ silicic mag-
matic systems and may present a useful approach at other volcanoes that show evidence for 
mafic recharge.

INTRODUCTION
The magmatic systems that underpin large-

scale silicic volcanism encompass large portions 
of the crust, with partially molten mushy res-
ervoirs that can be thousands of cubic kilome-
ters in volume (Bachmann and Huber, 2016). 
Although dominated by evolved compositions 
at upper-crustal levels, these systems are funda-

mentally driven from below by mantle-derived 
basaltic magmas. Therefore, the question aris-
es: Are the basalts parental to the generation of 
large silicic volcanic eruptions derived from a 
different source compared to surrounding re-
gional volcanism, or do they just represent local-
ly enhanced (spatially and temporally) magma 
fluxes? This question is challenging to address 
because ascending primitive magmas are gener-
ally intercepted by large silicic reservoirs and 
are rarely erupted in unmodified form (Wiebe, 

1994). Most evidence for mafic-silicic magma 
interactions therefore comes from mingled mag-
mas, foreign crystal populations or zoned crys-
tals, or co-erupted mafic enclaves (Bacon, 1986; 
Pritchard et al., 2013; Barker et al., 2016).

The central Taupō Volcanic Zone (TVZ; 
Fig. 1), New Zealand, is a frequently active and 
exceptionally productive region of Quaternary 
silicic volcanism, ultimately fueled by a basalt 
flux from the mantle that is unusually high for its 
continental arc setting (Wilson et al., 2009). The 
mantle processes driving this extreme flux are 
challenging to study because unmodified man-
tle-derived basalts are rarely erupted through the 
crustal silicic reservoirs. Over the past ∼60 k.y., 
a volume of >780 km3 magma (>99% silicic) 
has erupted from the central TVZ, almost en-
tirely from two caldera volcanoes: Okataina and 
Taupō (Fig. 1; Wilson et al., 2009). Between 
Taupō and Okataina, volcanic activity since ca. 
200 ka also includes scattered intercaldera maf-
ic (basaltic to basaltic andesite), small-volume 
(collectively ∼1 km3) eruptive centers that are 
typically aligned along northeast-southwest–
trending faults (Gamble et al., 1993; Table DR1 
in the GSA Data Repository1).

Here, we investigated the compositions of 
primitive melts feeding young volcanism in the 
central TVZ to see if there were any differences 
between the caldera centers and the less active 
areas in between. We used the novel approach of 
analyzing olivine-hosted melt inclusions (MIs) 
contained within juvenile mafic materials that *E-mail: simon.barker@vuw.ac.nz

1GSA Data Repository item 2020145, geochemical data tables, primary melt–corrected trace-element figure, and trace-element models, is available online at http://
www.geosociety.org/datarepository/2020/, or on request from editing@geosociety.org.
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were erupted during rhyolitic events at the cal-
dera volcanoes and compared these with their 
counterparts from the interspersed intercaldera 
mafic centers (Fig. 2A; Fig. DR2).

OLIVINE IN CENTRAL TVZ ERUPTIVE 
PRODUCTS

We studied olivine crystals from mafic en-
claves in deposits of the 25.5 ka Oruanui and 
3.5 ka Waimihia eruptions from Taupō, and the 
1314 Kaharoa eruption from Okataina (Fig. 2A; 
Fig. DR2). The enclaves are interpreted as ju-
venile because they have crenulated chilled 
margins and adhering rhyolitic glass, and they 
host rhyolite-derived crystals ingested during 
syneruptive interactions (Leonard et al., 2002; 
Rooyakkers et al., 2018). Olivines in these en-
claves are Mg-rich (Fo80–86) [Fo = molar Mg/
(Mg + Fe2+) × 100] and commonly contain 
MIs that are mostly <20 µm, but sometimes up 
to 100 µm, across (Fig. 2B; Table DR3). The 
MIs are variably crystalline due to residence in 
the rhyolitic magmas, which promoted crystal 
growth from the inclusion wall (e.g., Danyu-
shevsky et al., 2000). Two basaltic scoria units 
from Okataina were sampled for comparison 
with the 1886 Tarawera and 21.9 ka Okare-
ka eruption products containing rare olivines 
(Fo79–82; Table DR3). For contrast, we sampled 
olivines from six small-volume mafic centers be-
tween Taupō and Okataina (Fig. 1), the products 
of which represent the most primitive composi-

tions to reach the surface in this area over the 
past ∼200 k.y. (Gamble et al., 1993; Table DR1). 
Olivines in the sampled units overlap in compo-
sition (Fo78–90) with the caldera-related olivines 
(Table DR3), but their MIs are less common 
and tend to be smaller, and all have experienced 
some postentrapment crystallization.

MIs were homogenized through standard 
1 atm heating experiments to remove posten-
trapment crystallization (Danyushevsky et al., 
2002; Rowe et al., 2015). Rehomogenized MIs 
and olivine hosts were analyzed for major el-
ements by electron microprobe (Table DR3), 
and then MIs >35 µm across were analyzed for 
trace-element concentrations by laser-ablation 
inductively coupled plasma–mass spectrome-
try (Table DR4). Following analysis, measured 
glass compositions were corrected for over/un-
derheating (Rowe et al., 2015) and olivine-melt 
postentrapment reequilibration (Fe loss) using 
Petrolog3 (Danyushevsky and Plechov, 2011). 
A fundamental assumption required for Fe-loss 
corrections is that the whole-rock Fe content is 
representative of the MIs prior to entrapment. 
While a good approximation for basaltic lava, 
all enclaves showed clear macroscopic evidence 
for mixing with the silicic magma (Fig. 2A). In 
these instances, Fe contents of MIs closest to 
equilibrium with their host olivine with Fe-Mg 
distribution coefficients (KD) of ∼0.3 were used 
as the corrected Fe values (Rowe et al., 2011; 
full analytical details in Table DR3).

COMPOSITION OF CENTRAL TVZ 
OLIVINE-HOSTED MELT INCLUSIONS

MIs in olivines derived from the five caldera-
related units (intracaldera samples) were among 
the most primitive melt compositions identified 
from the TVZ to date, forming a distinct com-
positional group with low TiO2, P2O5, and Na2O 
contents when compared to MIs from the in-
tercaldera centers (Figs. 3A and 3B). Compo-
sitional differences between MIs from the two 
Taupō samples were minor, with Oruanui MIs 
having slightly lower TiO2 and Na2O contents 
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Figure 1. Map showing setting of Taupō Volcanic Zone (TVZ) in New Zealand (inset) with sample 
locations. Outlines of calderas and young TVZ (≤350 ka) boundary are from Wilson et al. (2009), 
and locations and compositions of young lavas are from Leonard et al. (2010). Location of Ker-
madec arc (KA) northeast of New Zealand is shown by black triangles, and Havre Trough (HT) 
back-arc basin is denoted by black dashed line. Intercaldera samples discussed here: 1—Kin-
loch, 2—Punatekahi, 3—Tatua, 4—Kakuki, 5—Ongaroto, 6—Harry Johnson Road. The two most 
recently active caldera volcanoes Tp (Taupō) and Ok (Okataina) are sources for intracaldera 
samples discussed here. Other caldera outlines: Kp—Kapenga, Oh—Ohakuri, Rp—Reporoa, 
Rt—Rotorua, and Wk—Whakamaru. See Table DR3 (see footnote 1) for further sampling details. 
Black dashed line shows approximate line of schematic cross section in Figure 4.
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Figure 2. Images of representative mafic 
samples from Taupō volcano (New Zealand) 
highlighting the context of materials analyzed 
in this study. (A) Juvenile mafic enclave from 
the 25.4 ka Oruanui eruption (P560) hosting 
sampled olivine crystals (photo inset). Note 
the crenulated margin to the enclave and 
adhering and ingested rhyolitic pumiceous 
glass, taken to indicate the molten nature of 
the enclave upon entrainment (e.g., Rooyak-
kers et al., 2018). (B) High-Fo olivine hosting 
multiple large, but partially crystalline, melt 
inclusions. See Figure DR2 (see footnote 1) 
for more images and Table DR3 for details of 
melt inclusion rehomogenization and analyti-
cal techniques.
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than those from Waimihia. Okareka MIs from 
Okataina showed slightly higher TiO2 than the 
other intracaldera samples, but otherwise Oka-
taina and Taupō MIs were very similar in major-
element compositions. Major-element compo-
sitions of MIs from the six intercaldera centers 
overlapped with published whole-rock data for 
monogenetic centers throughout the TVZ (red 
field in Fig. 3).

Trace-element data further highlighted con-
trasts between the intra- and intercaldera sam-
ples. MIs from Taupō and Okataina showed low 
abundances of incompatible trace elements (e.g., 
Zr = 30–60 ppm, Nb = 1–3 ppm, and Y = 10–
19 ppm) and rare earth elements (Figs. 3C and 
3D; Table DR4). Incompatible element con-
centrations were lowest in the Oruanui-derived 
MIs, which also had higher Sr/Nb and Th/Nb 

ratios than all other examples. In comparison, 
MIs from one of the intercaldera samples (On-
garoto) showed the highest concentrations of 
Zr (112–163 ppm), Nb (4–7 ppm), and Y (27–
33 ppm). Incompatible trace-element concentra-
tions in MIs from another intercaldera sample 
(Kinloch) fell between those of Ongaroto and 
the intracaldera values, overlapping with pub-
lished whole-rock trace-element data from other 
intercaldera basalts from the TVZ (red field in 
Figs. 3C and 3D).

DISCUSSION
Reconstructing the Primitive Melt 
Compositions

In general, the geochemical characteristics 
of mafic to intermediate arc magmas inevitably 
reflect variable degrees of crustal hybridization 

and differentiation, masking the primary magma 
compositions (Waight et al., 2017). Although 
we targeted MIs in the most primitive olivines, 
these crystals still recorded variable forsterite 
and NiO contents (Table DR3), consistent with 
varying degrees of crystallization at the time of 
melt entrapment. We therefore back-calculated 
olivine-hosted MI compositions to a primary 
mantle–derived magma composition using the 
PRIMACALC2 software (Kimura and Ariskin, 
2014). Most of the MIs experienced only olivine 
fractionation (typically <20%), but some from 
Waimihia and Kinloch also experienced some 
clinopyroxene fractionation (Table DR5). Trace-
element abundances, back-calculated using 
stepwise addition of the fractionated minerals, 
demonstrated, however, that compositional dif-
ferences between the intra- and intercaldera MIs 
reflect actual differences in primary melt com-
positions and not just differentiation  processes 
(Fig. DR6).

Compositional Contrasts Between  
Intra- and Intercaldera Melts

Despite the relatively small geographic dis-
tances involved (Fig. 1), there are major differ-
ences in the melt compositions entering the crust 
beneath Taupō and Okataina volcanoes versus 
those represented in the intercaldera centers. In-
tracaldera olivine-hosted MIs associated with 
silicic eruptions have lower high field strength 
element (HFSE) concentrations, which reflect 
fundamental differences in the mantle melting 
regimes beneath versus between the caldera 
volcanoes in the central TVZ. Compositions 
from the intracaldera MIs can be modeled by 
∼10%–30% melting of a depleted mid-ocean-
ridge mantle (DMM) source across a range of 
different pressures and mineralogies (Figs. 3C 
and 3D; Table DR4). Such compositions could 
reflect mantle source depletion through previous 
melt extraction, although MIs from the largest 
eruption considered (Oruanui) reflect the high-
est percentage of source melting (∼20%–30%) 
with a stronger subduction signature, suggesting 
that melting may be directly linked to enhanced 
fluid fluxes from the slab (e.g., flux melting; 
Fig. 3C; Rowe et al., 2009). In contrast, the in-
tercaldera MI (and their host rock) compositions 
can be modeled by 3%–10% partial melting of 
DMM. Alternatively, the subarc mantle beneath 
the TVZ may be heterogeneous (e.g., Waight 
et al., 2017) and enriched for the intercaldera 
basalts. Intercaldera TVZ basalts have higher 
HFSE concentrations, with trace-element com-
positions that extend to those observed in primi-
tive lavas erupted in the Havre Trough back-
arc basin, offshore to the north of New Zealand 
(Figs. 1 and 3). There, magmatism is primarily 
driven by low-degree decompression melting 
with variable, but lesser, inputs from slab fluids, 
reflected in low Sr/Nb, Ba/Nb, and Th/Nb values 
(Wysoczanski et al., 2006). The central TVZ is 

A
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D

Figure 3. Selected geochemical data from homogenized olivine-hosted melt inclusions (MIs) 
from intra- and intercaldera mafic eruptive products from the central Taupō Volcanic Zone (TVZ, 
New Zealand). (A) TiO2 versus SiO2. (B) Na2O versus SiO2. (C) Sr/Nb (measure of subduction-
related fluid component) versus Zr (measure of degree of partial melting or depletion). (D) 
Nb/Y (degree of mantle depletion) versus Zr. All data have been corrected for crystallization 
and olivine-melt postentrapment reequilibration; 2 standard deviation (SD) errors are shown 
by the black cross, and were calculated from repeated analysis of secondary standards (not 
shown for trace elements because they were typically smaller than the size of the symbols; see 
Tables DR3 and DR4 [see footnote 1] for further details). Red field represents whole-rock X-ray 
fluorescence data from host intercaldera basalts sampled in this study (Table DR1) and data 
from Gamble et al. (1993), Rooney and Deering (2014), and Waight et al. (2017) for comparison; 
gray field represents pillow glass compositions from Havre Trough back-arc basalt (BAB) lavas 
from Wysoczanski et al. (2006). Data from Raoul Island (Kermadec arc) basalt (gray triangle) are 
from Barker et al. (2013). For intracaldera MIs: Ok—Okataina, Tp—Taupō. Trace-element models 
for partial melting are shown for nonfractional batch melting adopting a deep (3 GPa) garnet-
bearing source (light gray) or a shallow (2 GPa) source (dark gray) of depleted mid-oceanic ridge 
basalt (MORB) mantle (DMM), from Salters and Strake (2004). Modal mineralogies of deep and 
shallow mantle sources, and partition coefficients used in batch melting calculations are those 
recommended by Salters and Strake (2004, and references therein). Black triangles represent 
1% increments up to 5% melting, and then 5% increments up to 30% melting.
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a segment of rifted continental arc with exten-
sion rates of ∼8–15 mm/yr–1, similar to those in 
the Havre Trough, which averages ∼20 mm/yr–1 
(Hamling et al., 2015; Caratori Tontini et al., 
2019). Rift-associated decompression melting is 
therefore inferred to play a major role in central 
TVZ magmatism.

Implications for Central TVZ Magmatism
The central TVZ is a complex rifting arc 

(Fig. 1), making it challenging to explain tem-
poral and spatial changes in volcanism. Com-
positional contrasts between olivine-hosted MIs 
from intercaldera centers versus intracaldera 
eruptive products show that the basaltic feed-
stocks entering the central TVZ crust reflect 
both lower degrees of more decompression-
driven melting (intercaldera examples) and 
higher degrees of more subduction-related flux 
melting (intracaldera examples). These findings 
highlight two important aspects of modern si-
licic volcanism in the central TVZ. First, there 
is a fundamental mantle control on the loca-
tions and productivities of Taupō and Okataina, 
driven by higher degrees of mantle melting and 
supply rates of primitive magmas into the crust 
(Fig. 4). This is supported by seismic imaging 
of the mantle wedge beneath the TVZ, which 
shows that there are large spatial variations in 
mantle melting, consistent with variable fluid 
flux from the subducting slab (Eberhart-Phillips 
et al., 2020). Mantle melting beneath the TVZ 
calderas may therefore reflect a combination of 
both rift-induced decompression melting and 
enhanced fluid-induced flux melting. Thermal 
calculations of magma input to the crust mod-
eled using both volcanic and geothermal out-
puts indicate that the relative degrees of partial 
 melting broadly match the relative rates of mafic 

magma supply, whereby 4–10 times more mafic 
melt per unit length of arc is focused into the 
crust beneath the caldera volcanoes, which ul-
timately provides the magma flux required to 
sustain and drive such large-scale silicic reser-
voirs (Fig. 4; Table DR7). In contrast, measure-
ments of crustal seismic anisotropy suggest that 
geothermal activity in the area between Taupō 
and Okataina is driven by lower-crustal mag-
matism, and that shallow magma reservoirs of 
a comparable size do not exist in this region 
(Illsley-Kemp et al., 2019). Pervasive normal 
faulting in the area between Okataina and Taupō 
may also help the small-degree basaltic melts 
to erupt (Leonard et al., 2010). Second, the 
compositional contrasts between the two data 
suites imply that compositions of mafic magmas 
feeding caldera systems are distinctly different 
than those of peripheral mafic centers, even over 
distances of <10–20 km. Compositions of the 
monogenetic intercaldera basalts should thus 
not be used to infer the mantle melting condi-
tions for caldera-related silicic volcanism in the 
central TVZ (cf. Rooney and Deering, 2014). 
A complicating factor is that the foci of silicic 
volcanism have shifted through time, with mul-
tiple caldera centers active at different times and 
locations in the central TVZ (Fig. 1; Gravley 
et al., 2016). This history would suggest that 
the degrees of mantle melting and/or delivery 
pathways of melt to the base of the crust have 
changed through time.

Inherited Olivines Provide a Geochemical 
Window through the Crust

Despite occurring only in trace amounts, 
inherited olivines and their MI cargoes pro-
vide unique insights into the subcrustal melt 
 compositions that ultimately have given rise to 

large-scale, caldera-related silicic volcanism in 
the central TVZ. We took advantage of two fac-
tors in this study: (1) the entrapment and preser-
vation of the most primitive melts in early crys-
tallized high-Fo olivines, and (2) the survival 
of these olivines into the crustally evolved and 
contaminated enclaves in silicic eruptions or in 
basaltic magmas that ascended rapidly. Target-
ing high-Mg olivines in the trace mafic “con-
taminants” of silicic deposits thus provides a 
new way to see through the crustal overprints 
in silicic magmatic systems in general, not just 
in the extreme example in the central TVZ. Our 
approach is applicable to any magmatic system 
where mafic enclaves have been documented, 
and it offers new possibilities to investigate the 
dynamics of silicic magmatic systems associated 
with caldera-forming events.
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