295 research outputs found

    Use of functional near-infrared spectroscopy to evaluate cognitive change when using healthcare simulation tools

    Get PDF
    This is an accepted manuscript of an article published by BMJ on 01/11/2020, available online: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8936993/ The accepted version of the publication may differ from the final published version.Background The use of brain imaging techniques in healthcare simulation is relatively rare. However, the use of mobile, wireless technique, such as functional nearinfrared spectroscopy (fNIRS), is becoming a useful tool for assessing the unique demands of simulation learning. For this study, this imaging technique was used to evaluate cognitive load during simulation learning events. Methods This study took place in relation to six simulation activities, paired for similarity, and evaluated comparative cognitive change between the three task pairs. The three paired tasks were: receiving a (1) face-toface and (2) video patient handover; observing a simulated scene in (1) two dimensions and (2) 360° field of vision; and on a simulated patient (1) taking a pulse and (2) taking a pulse and respiratory rate simultaneously. The total number of participants was n=12. Results In this study, fNIRS was sensitive to variations in task difficulty in common simulation tools and scenarios, showing an increase in oxygenated haemoglobin concentration and a decrease in deoxygenated haemoglobin concentration, as tasks increased in cognitive load. Conclusion Overall, findings confirmed the usefulness of neurohaemoglobin concentration markers as an evaluation tool of cognitive change in healthcare simulation. Study findings suggested that cognitive load increases in more complex cognitive tasks in simulation learning events. Task performance that increased in complexity therefore affected cognitive markers, with increase in mental effort required

    Atom transfer radical polymerisation - towards the synthesis of a fully-functional photorefractive polymer

    Get PDF
    Atom transfer radical polymerisation (ATRP) of styrene in xylene solution initiated with 1-phenylethyl bromide and mediated by CuBr/N-propyl-2- pyridinemethanimine catalyst complex was studied. The polymerisation was ill-controlled, yielding polymers with broad molecular weight distributions and values of number average molecular weight considerably higher than the theoretical values calculated from 100% initiator efficiency. The degree of control afforded over the polymerisation was enhanced by use of a more soluble catalyst complex, CuBr/N-octyl-2-pyridinemethanimine. Furthermore, the use of a more polar solvent, diglyme, generated a homogeneous catalyst complex that facilitated the production of polymers having narrow molecular weight distributions (1.10 < PDi < 1.20). The kinetics of the atom transfer radical polymerisation of methyl methacrylate at 90°C in diglyme solution initiated with ethyl-2-bromoisobutyrate and mediated by CuBr/N-octyl-2-pyridinemethanimine was studied and the orders of the reaction were established. The effect on the rate of polymerisation of the ratio of CuBr:N-octyl-2-pyridinemethanimine was also determined. The temperature dependencies of the rate of polymerisation of methyl methacrylate in diglyme solution and xylene solution were studied, and were found to be non-linear and dependent upon the polarity of the solvent. The use of highly polar aprotic solvents, such as N,N-dimethylformamide and dimethylsulphoxide, was found to be detrimental to the degree of control afforded over the polymerisation of methyl methacrylate. This was circumvented by use of a 5-fold excess, over that conventionally used, of catalyst complex. The atom transfer radical polymerisation of (4-nitrophenyl)-[3-[N-[2- (methacryloyloxy)ethyl]carbazolyl]]diazene in dimethyl sulphoxide solution was studied. Although homopolymerisation yielded only oligomers, copolymerisation of this monomer with methyl methacrylate was found to be readily achievable. Keywords: ATRP, Styrene; Methyl methacrylate; Polar solvents; Fully-functional photorefractive polymer.

    Diversity and evolution of surface polysaccharide synthesis loci in Enterobacteriales.

    Get PDF
    Bacterial capsules and lipopolysaccharides are diverse surface polysaccharides (SPs) that serve as the frontline for interactions with the outside world. While SPs can evolve rapidly, their diversity and evolutionary dynamics across different taxonomic scales has not been investigated in detail. Here, we focused on the bacterial order Enterobacteriales (including the medically relevant Enterobacteriaceae), to carry out comparative genomics of two SP locus synthesis regions, cps and kps, using 27,334 genomes from 45 genera. We identified high-quality cps loci in 22 genera and kps in 11 genera, around 4% of which were detected in multiple species. We found SP loci to be highly dynamic genetic entities: their evolution was driven by high rates of horizontal gene transfer (HGT), both of whole loci and component genes, and relaxed purifying selection, yielding large repertoires of SP diversity. In spite of that, we found the presence of (near-)identical locus structures in distant taxonomic backgrounds that could not be explained by recent exchange, pointing to long-term selective preservation of locus structures in some populations. Our results reveal differences in evolutionary dynamics driving SP diversity within different bacterial species, with lineages of Escherichia coli, Enterobacter hormaechei and Klebsiella aerogenes most likely to share SP loci via recent exchange; and lineages of Salmonella enterica, Citrobacter sakazakii and Serratia marcescens most likely to share SP loci via other mechanisms such as long-term preservation. Overall, the evolution of SP loci in Enterobacteriales is driven by a range of evolutionary forces and their dynamics and relative importance varies between different species

    Klebsiella pneumoniae as a key trafficker of drug resistance genes from environmental to clinically important bacteria

    Get PDF
    Klebsiella pneumoniae is an opportunistic bacterial pathogen known for its high frequency and diversity of antimicrobial resistance (AMR) genes. In addition to being a significant clinical problem in its own right, K. pneumoniae is the species within which several new AMR genes were first discovered before spreading to other pathogens (e.g. carbapenem-resistance genes KPC, OXA-48 and NDM-1). Whilst K. pneumoniae’s contribution to the overall AMR crisis is impossible to quantify, current evidence suggests it has a wider ecological distribution, significantly more varied DNA composition, greater AMR gene diversity and a higher plasmid burden than other Gram negative opportunists. Hence we propose it plays a key role in disseminating AMR genes from environmental microbes to clinically important pathogens.</jats:p

    Diversity and evolution of surface polysaccharide synthesis loci in Enterobacteriales.

    Get PDF
    Bacterial capsules and lipopolysaccharides are diverse surface polysaccharides (SPs) that serve as the frontline for interactions with the outside world. While SPs can evolve rapidly, their diversity and evolutionary dynamics across different taxonomic scales has not been investigated in detail. Here, we focused on the bacterial order Enterobacteriales (including the medically relevant Enterobacteriaceae), to carry out comparative genomics of two SP locus synthesis regions, cps and kps, using 27,334 genomes from 45 genera. We identified high-quality cps loci in 22 genera and kps in 11 genera, around 4% of which were detected in multiple species. We found SP loci to be highly dynamic genetic entities: their evolution was driven by high rates of horizontal gene transfer (HGT), both of whole loci and component genes, and relaxed purifying selection, yielding large repertoires of SP diversity. In spite of that, we found the presence of (near-)identical locus structures in distant taxonomic backgrounds that could not be explained by recent exchange, pointing to long-term selective preservation of locus structures in some populations. Our results reveal differences in evolutionary dynamics driving SP diversity within different bacterial species, with lineages of Escherichia coli, Enterobacter hormaechei and Klebsiella aerogenes most likely to share SP loci via recent exchange; and lineages of Salmonella enterica, Citrobacter sakazakii and Serratia marcescens most likely to share SP loci via other mechanisms such as long-term preservation. Overall, the evolution of SP loci in Enterobacteriales is driven by a range of evolutionary forces and their dynamics and relative importance varies between different species

    Klebsiella pneumoniae Population Genomics and Antimicrobial-Resistant Clones.

    Get PDF
    Antimicrobial-resistant Klebsiella pneumoniae (Kp) has emerged as a major global public health problem. While resistance can occur across a broad range of Kp clones, a small number have become globally distributed and commonly cause outbreaks in hospital settings. Here we describe recent comparative genomics investigations that have shed light on Kp population structure and the evolution of antimicrobial-resistant clones. These studies provide the basic framework within which genomic epidemiology and evolution can be understood, but have merely scratched the surface of what can and should be explored. We assert that further large-scale comparative and functional genomics studies are urgently needed to better understand the biology of this clinically important bacterium

    Detection of plasmid contigs in draft genome assemblies using customized Kraken databases.

    Get PDF
    Plasmids play an important role in bacterial evolution and mediate horizontal transfer of genes including virulence and antimicrobial resistance genes. Although short-read sequencing technologies have enabled large-scale bacterial genomics, the resulting draft genome assemblies are often fragmented into hundreds of discrete contigs. Several tools and approaches have been developed to identify plasmid sequences in such assemblies, but require trade-off between sensitivity and specificity. Here we propose using the Kraken classifier, together with a custom Kraken database comprising known chromosomal and plasmid sequences of Klebsiella pneumoniae species complex (KpSC), to identify plasmid-derived contigs in draft assemblies. We assessed performance using Illumina-based draft genome assemblies for 82 KpSC isolates, for which complete genomes were available to supply ground truth. When benchmarked against five other classifiers (Centrifuge, RFPlasmid, mlplasmids, PlaScope and Platon), Kraken showed balanced performance in terms of overall sensitivity and specificity (90.8 and 99.4 %, respectively, for contig count; 96.5 and >99.9 %, respectively, for cumulative contig length), and the highest accuracy (96.8% vs 91.8-96.6% for contig count; 99.8% vs 99.0-99.7 % for cumulative contig length), and F1-score (94.5 % vs 84.5-94.1 %, for contig count; 98.0 % vs 88.9-96.7 % for cumulative contig length). Kraken also achieved consistent performance across our genome collection. Furthermore, we demonstrate that expanding the Kraken database with additional known chromosomal and plasmid sequences can further improve classification performance. Although we have focused here on the KpSC, this methodology could easily be applied to other species with a sufficient number of completed genomes

    Identification of Klebsiella capsule synthesis loci from whole genome data.

    Get PDF
    Klebsiella pneumoniae is a growing cause of healthcare-associated infections for which multi-drug resistance is a concern. Its polysaccharide capsule is a major virulence determinant and epidemiological marker. However, little is known about capsule epidemiology since serological typing is not widely accessible and many isolates are serologically non-typeable. Molecular typing techniques provide useful insights, but existing methods fail to take full advantage of the information in whole genome sequences. We investigated the diversity of the capsule synthesis loci (K-loci) among 2503 K. pneumoniae genomes. We incorporated analyses of full-length K-locus nucleotide sequences and also clustered protein-encoding sequences to identify, annotate and compare K-locus structures. We propose a standardized nomenclature for K-loci and present a curated reference database. A total of 134 distinct K-loci were identified, including 31 novel types. Comparative analyses indicated 508 unique protein-encoding gene clusters that appear to reassort via homologous recombination. Extensive intra- and inter-locus nucleotide diversity was detected among the wzi and wzc genes, indicating that current molecular typing schemes based on these genes are inadequate. As a solution, we introduce Kaptive, a novel software tool that automates the process of identifying K-loci based on full locus information extracted from whole genome sequences (https://github.com/katholt/Kaptive). This work highlights the extensive diversity of Klebsiella K-loci and the proteins that they encode. The nomenclature, reference database and novel typing method presented here will become essential resources for genomic surveillance and epidemiological investigations of this pathogen
    corecore