32 research outputs found

    Live imaging reveals a conserved role of fatty acid beta-oxidation in early lymphatic development in zebrafish

    No full text
    During embryonic development, lymphatic endothelial cells (LECs) differentiate from venous endothelial cells (VECs), a process that is tightly regulated by several genetic signals. While the aquatic zebrafish model is regularly used for studying lymphangiogenesis and offers the unique advantage of time-lapse video-imaging of lymphatic development, some aspects of lymphatic development in this model differ from those in the mouse. It therefore remained to be determined whether fatty acid β-oxidation (FAO), which we showed to regulate lymphatic formation in the mouse, also co-determines lymphatic development in this aquatic model. Here, we took advantage of the power of the zebrafish embryo model to visualize the earliest steps of lymphatic development through time-lapse video-imaging. By targeting zebrafish isoforms of carnitine palmitoyltransferase 1a (cpt1a), a rate controlling enzyme of FAO, with multiple morpholinos, we demonstrate that reducing CPT1A levels and FAO flux during zebrafish development impairs lymphangiogenic secondary sprouting, the initiation of lymphatic development in the zebrafish trunk, and the formation of the first lymphatic structures. These findings not only show evolutionary conservation of the importance of FAO for lymphatic development, but also suggest a role for FAO in co-regulating the process of VEC-to-LEC differentiation in zebrafish in vivo.status: publishe

    Peroxisomal multifunctional protein-2 deficiency causes neuroinflammation and degeneration of Purkinje cells independent of very long chain fatty acid accumulation

    No full text
    Although peroxisome biogenesis and β-oxidation disorders are well known for their neurodevelopmental defects, patients with these disorders are increasingly diagnosed with neurodegenerative pathologies. In order to investigate the cellular mechanisms of neurodegeneration in these patients, we developed a mouse model lacking multifunctional protein 2 (MFP2, also called D-bifunctional protein), a central enzyme of peroxisomal β-oxidation, in all neural cells (Nestin-Mfp2(-/-)) or in oligodendrocytes (Cnp-Mfp2(-/-)) and compared these models with an already established general Mfp2 knockout. Nestin-Mfp2 but not Cnp-Mfp2 knockout mice develop motor disabilities and ataxia, similar to the general mutant. Deterioration of motor performance correlates with the demise of Purkinje cell axons in the cerebellum, which precedes loss of Purkinje cells and cerebellar atrophy. This closely mimics spinocerebellar ataxias of patients affected with mild peroxisome β-oxidation disorders. However, general knockouts have a much shorter life span than Nestin-Mfp2 knockouts which is paralleled by a disparity in activation of the innate immune system. Whereas in general mutants a strong and chronic proinflammatory reaction proceeds throughout the brain, elimination of MFP2 from neural cells results in minor neuroinflammation. Neither the extent of the inflammatory reaction nor the cerebellar degeneration could be correlated with levels of very long chain fatty acids, substrates of peroxisomal β-oxidation. In conclusion, MFP2 has multiple tasks in the adult brain, including the maintenance of Purkinje cells and the prevention of neuroinflammation but this is not mediated by its activity in oligodendrocytes nor by its role in very long chain fatty acid degradatio

    Peroxisomal multifunctional protein-2 deficiency causes neuroinflammation and degeneration of Purkinje cells independent of very long chain fatty acid accumulation

    No full text
    Although peroxisome biogenesis and β-oxidation disorders are well known for their neurodevelopmental defects, patients with these disorders are increasingly diagnosed with neurodegenerative pathologies. In order to investigate the cellular mechanisms of neurodegeneration in these patients, we developed a mouse model lacking multifunctional protein 2 (MFP2, also called D-bifunctional protein), a central enzyme of peroxisomal β-oxidation, in all neural cells (Nestin-Mfp2(-/-)) or in oligodendrocytes (Cnp-Mfp2(-/-)) and compared these models with an already established general Mfp2 knockout. Nestin-Mfp2 but not Cnp-Mfp2 knockout mice develop motor disabilities and ataxia, similar to the general mutant. Deterioration of motor performance correlates with the demise of Purkinje cell axons in the cerebellum, which precedes loss of Purkinje cells and cerebellar atrophy. This closely mimics spinocerebellar ataxias of patients affected with mild peroxisome β-oxidation disorders. However, general knockouts have a much shorter life span than Nestin-Mfp2 knockouts which is paralleled by a disparity in activation of the innate immune system. Whereas in general mutants a strong and chronic proinflammatory reaction proceeds throughout the brain, elimination of MFP2 from neural cells results in minor neuroinflammation. Neither the extent of the inflammatory reaction nor the cerebellar degeneration could be correlated with levels of very long chain fatty acids, substrates of peroxisomal β-oxidation. In conclusion, MFP2 has multiple tasks in the adult brain, including the maintenance of Purkinje cells and the prevention of neuroinflammation but this is not mediated by its activity in oligodendrocytes nor by its role in very long chain fatty acid degradation.publisher: Elsevier articletitle: Peroxisomal multifunctional protein-2 deficiency causes neuroinflammation and degeneration of Purkinje cells independent of very long chain fatty acid accumulation journaltitle: Neurobiology of Disease articlelink: http://dx.doi.org/10.1016/j.nbd.2013.06.006 content_type: article copyright: Copyright © 2013 Elsevier Inc. All rights reserved.status: publishe

    Neurogenic Radial Glia-like Cells in Meninges Migrate and Differentiate into Functionally Integrated Neurons in the Neonatal Cortex

    No full text
    Whether new neurons are added in the postnatal cerebral cortex is still debated. Here, we report that the meninges of perinatal mice contain a population of neurogenic progenitors formed during embryonic development that migrate to the caudal cortex and differentiate into Satb2+ neurons in cortical layers II\u2013IV. The resulting neurons are electrically functional and integrated into local microcircuits. Single-cell RNA sequencing identified meningeal cells with distinct transcriptome signatures characteristic of (1) neurogenic radial glia-like cells (resembling neural stem cells in the SVZ), (2) neuronal cells, and (3) a cell type with an intermediate phenotype, possibly representing radial glia-like meningeal cells differentiating to neuronal cells. Thus, we have identified a pool of embryonically derived radial glia-like cells present in the meninges that migrate and differentiate into functional neurons in the neonatal cerebral cortex

    A European perspective on testicular tissue cryopreservation for fertility preservation in prepubertal and adolescent boys

    No full text
    STUDY QUESTION What clinical practices, patient management strategies and experimental methods are currently being used to preserve and restore the fertility of prepubertal boys and adolescent males? SUMMARY ANSWER Based on a review of the clinical literature and research evidence for sperm freezing and testicular tissue cryopreservation, and after consideration of the relevant ethical and legal challenges, an algorithm for the cryopreservation of sperm and testicular tissue is proposed for prepubertal boys and adolescent males at high risk of fertility loss. WHAT IS KNOWN ALREADY A known late effect of the chemotherapy agents and radiation exposure regimes used to treat childhood cancers and other non-malignant conditions in males is the damage and/or loss of the proliferating spermatogonial stem cells in the testis. Cryopreservation of spermatozoa is the first line treatment for fertility preservation in adolescent males. Where sperm retrieval is impossible, such as in prepubertal boys, or it is unfeasible in adolescents prior to the onset of ablative therapies, alternative experimental treatments such as testicular tissue cryopreservation and the harvesting and banking of isolated spermatogonial stem cells can now be proposed as viable means of preserving fertility. STUDY DESIGN, SIZE, DURATION Advances in clinical treatments, patient management strategies and the research methods used to preserve sperm and testicular tissue for prepubertal boys and adolescents were reviewed. A snapshot of the up-take of testis cryopreservation as a means to preserve the fertility of young males prior to December 2012 was provided using a questionnaire. PARTICIPANTS/MATERIALS, SETTING, METHODS A comprehensive literature review was conducted. In addition, survey results of testis freezing practices in young patients were collated from 24 European centres and Israeli University Hospitals. MAIN RESULTS AND THE ROLE OF CHANCE There is increasing evidence of the use of testicular tissue cryopreservation as a means to preserve the fertility of pre- and peri-pubertal boys of up to 16 year-old. The survey results indicate that of the 14 respondents, half of the centres were actively offering testis tissue cryobanking as a means of safeguarding the future fertility of boys and adolescents as more than 260 young patients (age range less than 1 year old to 16 years of age), had already undergone testicular tissue retrieval and storage for fertility preservation. The remaining centres were considering the implementation of a tissue-based fertility preservation programme for boys undergoing oncological treatments. LIMITATIONS, REASONS FOR CAUTION The data collected were limited by the scope of the questionnaire, the geographical range of the survey area, and the small number of respondents. WIDER IMPLICATIONS OF THE FINDINGS The clinical and research questions identified and the ethical and legal issues raised are highly relevant to the multi-disciplinary teams developing treatment strategies to preserve the fertility of prepubertal and adolescent boys who have a high risk of fertility loss due to ablative interventions, trauma or genetic pre-disposition. STUDY FUNDING/COMPETING INTEREST(S) The work was funded by the European Society of Human Reproduction and Embryology (ESHRE)

    Anti-PlGF inhibits growth of VEGF(R)-inhibitor-resistant tumors without affecting healthy vessels.

    Get PDF
    20Novel antiangiogenic strategies with complementary mechanisms are needed to maximize efficacy and minimize resistance to current angiogenesis inhibitors. We explored the therapeutic potential and mechanisms of alphaPlGF, an antibody against placental growth factor (PlGF), a VEGF homolog, which regulates the angiogenic switch in disease, but not in health. alphaPlGF inhibited growth and metastasis of various tumors, including those resistant to VEGF(R) inhibitors (VEGF(R)Is), and enhanced the efficacy of chemotherapy and VEGF(R)Is. alphaPlGF inhibited angiogenesis, lymphangiogenesis, and tumor cell motility. Distinct from VEGF(R)Is, alphaPlGF prevented infiltration of angiogenic macrophages and severe tumor hypoxia, and thus, did not switch on the angiogenic rescue program responsible for resistance to VEGF(R)Is. Moreover, it did not cause or enhance VEGF(R)I-related side effects. The efficacy and safety of alphaPlGF, its pleiotropic and complementary mechanism to VEGF(R)Is, and the negligible induction of an angiogenic rescue program suggest that alphaPlGF may constitute a novel approach for cancer treatment.nonemixedC. Fischer;B. Jonckx;M. Mazzone;S. Zacchigna;S. Loges;L. Pattarini;E. Chorianopoulos;L. Liesenborghs;M. Koch;M. D. Mol;M. Autiero;S. Wyns;S. Plaisance;L. Moons;N. v. Rooijen;M. Giacca;J. Stassen;M. Dewerchin;D. Collen;P. CarmelietC., Fischer; B., Jonckx; M., Mazzone; Zacchigna, Serena; S., Loges; L., Pattarini; E., Chorianopoulos; L., Liesenborghs; M., Koch; M. D., Mol; M., Autiero; S., Wyns; S., Plaisance; L., Moons; N. v., Rooijen; Giacca, Mauro; J., Stassen; M., Dewerchin; D., Collen; P., Carmelie
    corecore