235 research outputs found

    Drip water electrical conductivity as an indicator of cave ventilation at the event scale

    Get PDF
    The use of speleothems to reconstruct past climatic and environmental change through chemical proxies is becoming increasingly common. Speleothem chemistry is controlled by hydrological and atmospheric processes which vary over seasonal time scales. However, as many reconstructions using speleothem carbonate are now endeavouring to acquire information about precipitation and temperature dynamics at a scale that can capture short term hydrological events, our understanding of within cave processes must match this resolution. Monitoring within Cueva de Asiul (N. Spain) has identified rapid (hourly resolution) changes in drip water electrical conductivity (EC), which is regulated by the pCO2 in the cave air. Drip water EC is therefore controlled by different modes of cave ventilation. In Cueva de Asiul a combination of density differences, and external pressure changes control ventilation patterns. Density driven changes in cave ventilation occur on a diurnal scale at this site irrespective of season, driven by fluctuations in external temperature across the cave internal temperature threshold. As external temperatures drop below those within the cave low pCO2 external air enters the void, facilitating the deposition of speleothem carbonate and causing a reduction in measured drip water EC. Additionally, decreases in external pressure related to storm activity act as a secondary ventilation mechanism. Reductions in external air pressure cause a drop in cave air pressure, enhancing karst air draw down, increasing the pCO2 of the cave and therefore the EC measured within drip waters. EC thereby serves as a first order indicator of cave ventilation, regardless of changes in speleothem drip rates and karst hydrological conditions. High resolution monitoring of cave drip water electrical conductivity reveals the highly sensitive nature of ventilation dynamics within cave environments, and highlights the importance of this for understanding trace element incorporation into speleothem carbonate at the event scale

    Constraints on neutron star superfluidity from the cooling neutron star in Cassiopeia A using all Chandra ACIS-S observations

    Full text link
    Analysis of Chandra observations of the neutron star (NS) in the centre of the Cassiopeia A supernova remnant taken in the subarray (FAINT) mode of the ACIS detector performed by Posselt and collaborators revealed, after inclusion of the most recent (May 2020) observations, a significant decrease of the source surface temperature from 2006 to 2020. The obtained cooling rate is consistent with those obtained from analysis of the 2000−-2019 data taken in the GRADED mode of the ACIS detector, which is potentially more strongly affected by instrumental effects. We performed a joint spectral analysis using all ACIS data to constrain the NS parameters and cooling rate. We constrain the mass of the Cassiopeia A NS at M=1.55±0.25 M⊙M=1.55\pm0.25~M_\odot, and its radius at R=13.5±1.5R=13.5\pm 1.5 km. The surface temperature cooling rate is found to be 2.2±0.32.2\pm 0.3 per cent in 10 years if the absorbing hydrogen column density is allowed to vary and 1.6±0.21.6\pm 0.2 per cent in 10 years if it is fixed. The observed cooling can be explained by enhanced neutrino emission from the superfluid NS interior due to Cooper Pair Formation (CPF) process. Based on analysis of all ACIS data, we constrain the maximal critical temperature of triplet neutron pairing within the NS core at (4−9.5)×108(4-9.5)\times 10^{8} K. In accordance with previous studies, the required effective strength of the CPF neutrino emission is at least a factor of 2 higher than existing microscopic calculations suggest.Comment: 20 pages, 17 figures. Accepted for publication in MNRA

    Bostonia: The Boston University Alumni Magazine. Volume 34

    Full text link
    Founded in 1900, Bostonia magazine is Boston University's main alumni publication, which covers alumni and student life, as well as university activities, events, and programs

    Millennial scale control of European climate by the North Atlantic Oscillation from 12,500 BP: the Asiul speleothem record

    Get PDF
    Contemporary climate in Europe is strongly influenced by the North Atlantic Oscillation (NAO), the atmospheric pressure dipole between Iceland and the Azores1. Under positive NAO conditions winter storm tracks associated with the Atlantic Westerly Jet (AWJ) migrate northwards, leading to wetter and warmer winter conditions in north-western Europe and dry conditions in southern Europe; including the Iberian Peninsula. Under the negative NAO phase, storm tracks weaken and shift southwards reversing the pattern1. Existing proxy records of the NAO suggest that this atmospheric process only began to dominate European climate at approximately 8000 years BP, related to the final breakup of the Laurentide ice shelf2. However, here we present evidence of precipitation changes from a high-resolution speleothem δ18O record from northern Iberia, which indicates NAO-like forcing extending throughout the Holocene and into the Younger Dryas (YD) at 12,500 years BP. These variations in precipitation delivery relate to an underlying millennial scale cycle in NAO dynamics. The speleothem δ18O is strongly correlated to existing records of North Atlantic Ocean ice rafted debris (IRD)3, indicating an NAO-like connection with oceanic circulation during the Holocene2. These large-scale atmospheric processes have dramatically influenced the delivery of precipitation to northern Iberia and may have played a decisive role in environmental and human development in the region, throughout the Holocene

    North Atlantic forcing of moisture delivery to Europe throughout the Holocene

    Get PDF
    Century-to-millennial scale fluctuations in precipitation and temperature are an established feature of European Holocene climates. Changes in moisture delivery are driven by complex interactions between ocean moisture sources and atmospheric circulation modes, making it difficult to resolve the drivers behind millennial scale variability in European precipitation. Here, we present two overlapping decadal resolution speleothem oxygen isotope (δ18O) records from a cave on the Atlantic coastline of northern Iberia, covering the period 12.1–0 ka. Speleothem δ18O reveals nine quasi-cyclical events of relatively wet-to-dry climatic conditions during the Holocene. Dynamic Harmonic Regression modelling indicates that changes in precipitation occurred with a ~1500 year frequency during the late Holocene and at a shorter length during the early Holocene. The timing of these cycles coincides with changes in North Atlantic Ocean conditions, indicating a connectivity between ocean conditions and Holocene moisture delivery. Early Holocene climate is potentially dominated by freshwater outburst events, whilst ~1500 year cycles in the late Holocene are more likely driven by changes internal to the ocean system. This is the first continental record of its type that clearly demonstrates millennial scale connectivity between the pulse of the ocean and precipitation over Europe through the entirety of the Holocene

    Assessing the potential of autonomous submarine gliders for ecosystem monitoring across multiple trophic levels (plankton to cetaceans) and pollutants in shallow shelf seas

    Get PDF
    A combination of scientific, economic, technological and policy drivers is behind a recent upsurge in the use of marine autonomous systems (and accompanying miniaturized sensors) for environmental mapping and monitoring. Increased spatial–temporal resolution and coverage of data, at reduced cost, is particularly vital for effective spatial management of highly dynamic and heterogeneous shelf environments. This proof-of-concept study involves integration of a novel combination of sensors onto buoyancy-driven submarine gliders, in order to assess their suitability for ecosystem monitoring in shelf waters at a variety of trophic levels. Two shallow-water Slocum gliders were equipped with CTD and fluorometer to measure physical properties and chlorophyll, respectively. One glider was also equipped with a single-frequency echosounder to collect information on zooplankton and fish distribution. The other glider carried a Passive Acoustic Monitoring system to detect and record cetacean vocalizations, and a passive sampler to detect chemical contaminants in the water column. The two gliders were deployed together off southwest UK in autumn 2013, and targeted a known tidal-mixing front west of the Isles of Scilly. The gliders’ mission took about 40 days, with each glider travelling distances of >1000 km and undertaking >2500 dives to depths of up to 100 m. Controlling glider flight and alignment of the two glider trajectories proved to be particularly challenging due to strong tidal flows. However, the gliders continued to collect data in poor weather when an accompanying research vessel was unable to operate. In addition, all glider sensors generated useful data, with particularly interesting initial results relating to subsurface chlorophyll maxima and numerous fish/cetacean detections within the water column. The broader implications of this study for marine ecosystem monitoring with submarine gliders are discussed

    Roles of forest bioproductivity, transpiration and fire in a nine-year record of cave dripwater chemistry from southwest Australia

    Get PDF
    Forest biomass has the potential to significantly impact the chemistry and volume of diffuse recharge to cave dripwater via the processes of nutrient uptake, transpiration and forest fire. Yet to-date, this role has been under-appreciated in the interpretation of speleothem trace element records from forested catchments. In this study, the impact of vegetation is examined and quantified in a long-term monitoring program from Golgotha Cave, SW Australia. The contribution of salts from rain and dry-deposition of aerosols and dissolved elements from soil mineral and bedrock dissolution to dripwater chemistry are also examined. This study is an essential pre-requisite for the future interpretation of trace element data from SW Australian stalagmite records, whose record of past environmental change will include alterations in these biogeochemical fluxes. Solute concentrations in dripwater vary spatially, supporting the existence of distinct flow paths governed by varying amounts of transpiration as well as nutrient uptake by deeply-rooted biomass. Applying principal components analysis, we identify a common pattern of variation in dripwater Cl, Mg, K, Ca, Sr and Si, interpreted as reflecting increasing transpiration, due to forest growth. Mass-balance calculations show that increasing elemental sequestration into biomass has the largest impact on SO4, providing an explanation for the overall falling dripwater SO4 concentrations through time, in contrast to the transpiration-driven rising trend dominating other ions. The long-term rise in transpiration and nutrient uptake driven by increased forest bioproductivity and its impact on our dripwater chemistry is attributed to i. the post-fire recovery of the forest understorey after fire impacted the site in 2006 CE; ii. and/or increased water and nutrient demand as trees in the overlying forest mature. The impact of climate-driven changes on the water balance is also examined. Finally, the implications for interpreting SW Australian speleothem trace element records are discussed

    Arginase-1–Expressing Macrophages Suppress Th2 Cytokine–Driven Inflammation and Fibrosis

    Get PDF
    Macrophage-specific expression of Arginase-1 is commonly believed to promote inflammation, fibrosis, and wound healing by enhancing L-proline, polyamine, and Th2 cytokine production. Here, however, we show that macrophage-specific Arg1 functions as an inhibitor of inflammation and fibrosis following infection with the Th2-inducing pathogen Schistosoma mansoni. Although susceptibility to infection was not affected by the conditional deletion of Arg1 in macrophages, Arg1−/flox;LysMcre mice died at an accelerated rate. The mortality was not due to acute Th1/NOS2-mediated hepatotoxicity or endotoxemia. Instead, granulomatous inflammation, liver fibrosis, and portal hypertension increased in infected Arg1−/flox;LysMcre mice. Similar findings were obtained with Arg1flox/flox;Tie2cre mice, which delete Arg1 in all macrophage populations. Production of Th2 cytokines increased in the infected Arg1−/flox;LysMcre mice, and unlike alternatively activated wild-type macrophages, Arg1−/flox;LysMcre macrophages failed to inhibit T cell proliferation in vitro, providing an underlying mechanism for the exacerbated Th2 pathology. The suppressive activity of Arg1-expressing macrophages was independent of IL-10 and TGF-β1. However, when exogenous L-arginine was provided, T cell proliferation was restored, suggesting that Arg1-expressing macrophages deplete arginine, which is required to sustain CD4+ T cell responses. These data identify Arg1 as the essential suppressive mediator of alternatively activated macrophages (AAM) and demonstrate that Arg1-expressing macrophages function as suppressors rather than inducers of Th2-dependent inflammation and fibrosis

    Number word use in toddlerhood is associated with number recall performance at seven years of age

    Get PDF
    Previous studies have shown that verbal working memory and vocabulary acquisition are linked in early childhood. However, it is unclear whether acquisition of a narrow range of words during toddlerhood may be particularly related to recall of the same words later in life. Here we asked whether vocabulary acquisition of number words, location and quantifier terms over the first three years of life are associated with verbal and visuospatial working memory at seven years. Our results demonstrate that children who produced more number words between 20-26 months and started to produce the number words 1-10 earlier showed greater number recall at 7 years of age. This link was specific to numbers and neither extended to quantifier and location terms nor verbal and visuospatial working memory performance with other stimuli. These findings suggest a category-specific link between the mental lexicon of number words and working memory for numbers at an early age. © 2014 Libertus et al

    NICER and Fermi GBM Observations of the First Galactic Ultraluminous X-Ray Pulsar Swift J0243.6+6124

    Get PDF
    Swift J0243.6+6124 is a newly discovered Galactic Be/X-ray binary, revealed in late 2017 September in a giant outburst with a peak luminosity of 2 × 10[superscript 39](d/7 kpc)[superscript 2] erg s[superscript -1] (0.1-10 keV), with no formerly reported activity. At this luminosity, Swift J0243.6+6124 is the first known galactic ultraluminous X-ray pulsar. We describe Neutron star Interior Composition Explorer (NICER) and Fermi Gamma-ray Burst Monitor (GBM) timing and spectral analyses for this source. A new orbital ephemeris is obtained for the binary system using spin frequencies measured with GBM and 15-50 keV fluxes measured with the Neil Gehrels Swift Observatory Burst Alert Telescope to model the system's intrinsic spin-up. Power spectra measured with NICER show considerable evolution with luminosity, including a quasi-periodic oscillation near 50 mHz that is omnipresent at low luminosity and has an evolving central frequency. Pulse profiles measured over the combined 0.2-100 keV range show complex evolution that is both luminosity and energy dependent. Near the critical luminosity of L ∼ 10[superscript 38] erg s[superscript -1], the pulse profiles transition from single peaked to double peaked, the pulsed fraction reaches a minimum in all energy bands, and the hardness ratios in both NICER and GBM show a turnover to softening as the intensity increases. This behavior repeats as the outburst rises and fades, indicating two distinct accretion regimes. These two regimes are suggestive of the accretion structure on the neutron star surface transitioning from a Coulomb collisional stopping mechanism at lower luminosities to a radiation-dominated stopping mechanism at higher luminosities. This is the highest observed (to date) value of the critical luminosity, suggesting a magnetic field of B ∼ 10[superscript 13] G.United States. National Aeronautics and Space Administratio
    • …
    corecore