130 research outputs found

    Experimental Findings and Numerical Simulations on Gasoline Fuel Injector System

    Full text link
    https://deepblue.lib.umich.edu/bitstream/2027.42/154192/1/39015101405176.pd

    Cardiolipin occupancy profiles of YidC paralogs reveal the significance of respective TM2 helix residues in determining paralog-specific phenotypes

    Get PDF
    YidC belongs to an evolutionarily conserved family of insertases, YidC/Oxa1/Alb3, in bacteria, mitochondria, and chloroplasts, respectively. Unlike Gram-negative bacteria, Gram-positives including Streptococcus mutans harbor two paralogs of YidC. The mechanism for paralog-specific phenotypes of bacterial YidC1 versus YidC2 has been partially attributed to the differences in their cytoplasmic domains. However, we previously identified a W138R gain-of-function mutation in the YidC1 transmembrane helix 2. YidC1W138R mostly phenocopied YidC2, yet the mechanism remained unknown. Primary sequence comparison of streptococcal YidCs led us to identify and mutate the YidC1W138 analog, YidC2S152 to W/A, which resulted in a loss of YidC2- and acquisition of YidC1-like phenotype. The predicted lipid-facing side chains of YidC1W138/YidC2S152 led us to propose a role for membrane phospholipids in specific-residue dependent phenotypes of S. mutans YidC paralogs. Cardiolipin (CL), a prevalent phospholipid in the S. mutans cytoplasmic membrane during acid stress, is encoded by a single gene, cls. We show a concerted mechanism for cardiolipin and YidC2 under acid stress based on similarly increased promoter activities and similar elimination phenotypes. Using coarse grain molecular dynamics simulations with the Martini2.2 Forcefield, YidC1 and YidC2 wild-type and mutant interactions with CL were assessed in silico. We observed substantially increased CL interaction in dimeric versus monomeric proteins, and variable CL occupancy in YidC1 and YidC2 mutant constructs that mimicked characteristics of the other wild-type paralog. Hence, paralog-specific amino acid- CL interactions contribute to YidC1 and YidC2-associated phenotypes that can be exchanged by point mutation at positions 138 or 152, respectively

    Is “incidental finding” the best term?: a study of patients’ preferences

    Get PDF
    There is debate within the genetics community about the optimal term to describe genetic variants unrelated to the test indication, but potentially important for health. Given the lack of consensus and the importance of adopting terminology that promotes effective clinical communication, we sought the opinion of clinical genetics patients

    Neural modulation of directed forgetting by valence and arousal: an event-related potential study

    Get PDF
    Intentional forgetting benefits memory by removing no longer needed information and promoting processing of more relevant materials. This study sought to understand how the behavioural and neurophysiological representation of intentional forgetting would be impacted by emotion. We took a novel approach by examining the unique contribution of both valence and arousal on emotional directed forgetting. Participants completed an item directed forgetting task for positive, negative, and neutral words at high and lower levels of arousal while brain activity was recorded using electroencephalography (EEG). Behaviourally, recognition of to-be-remembered (TBR) and to-be-forgotten (TBF) items varied as a function of valence and arousal with reduced directed forgetting for high arousing negative and neutral words. In the brain, patterns of frontal and posterior activation in response to TBF and TBR cues respectively replicated prior EEG evidence to support involvement of inhibitory and selective rehearsal mechanisms in item directed forgetting. Interestingly, emotion only impacted cue-related posterior activity, which varied depending on specific interactions between valence and arousal. Together, results suggest that the brain handles valence and arousal differently and highlights the importance of considering in a collective manner the multidimensional nature of emotion in experimentation

    Maturation of the functional mouse CRES amyloid from globular form

    Get PDF
    The epididymal lumen contains a complex cystatin-rich nonpathological amyloid matrix with putative roles in sperm maturation and sperm protection. Given our growing understanding for the biological function of this and other functional amyloids, the problem still remains: how functional amyloids assemble including their initial transition to early oligomeric forms. To examine this, we developed a protocol for the purification of nondenatured mouse CRES, a component of the epididymal amyloid matrix, allowing us to examine its assembly to amyloid under conditions that may mimic those in vivo. Herein we use X-ray crystallography, solution-state NMR, and solid-state NMR to follow at the atomic level the assembly of the CRES amyloidogenic precursor as it progressed from monomeric folded protein to an advanced amyloid. We show the CRES monomer has a typical cystatin fold that assembles into highly branched amyloid matrices, comparable to those in vivo, by forming ÎČ-sheet assemblies that our data suggest occur via two distinct mechanisms: a unique conformational switch of a highly flexible disulfide-anchored loop to a rigid ÎČ-strand and by traditional cystatin domain swapping. Our results provide key insight into our understanding of functional amyloid assembly by revealing the earliest structural transitions from monomer to oligomer and by showing that some functional amyloid structures may be built by multiple and distinctive assembly mechanisms

    Significant variation in transformation frequency in Streptococcus pneumoniae

    Get PDF
    The naturally transformable bacterium Streptococcus pneumoniae is able to take up extracellular DNA and incorporate it into its genome. Maintaining natural transformation within a species requires that the benefits of transformation outweigh its costs. Although much is known about the distribution of natural transformation among bacterial species, little is known about the degree to which transformation frequencies vary within species. Here we find that there is significant variation in transformation frequency between strains of Streptococcus pneumoniae isolated from asymptomatic carriage, and that this variation is not concordant with isolate genetic relatedness. Polymorphism in the signalling system regulating competence is also not causally related to differences in transformation frequency, although this polymorphism does influence the degree of genetic admixture experienced by bacterial strains. These data suggest that bacteria can evolve new transformation frequencies over short evolutionary timescales. This facility may permit cells to balance the potential costs and benefits of transformation by regulating transformation frequency in response to environmental conditions

    Genome modeling system: A knowledge management platform for genomics

    Get PDF
    In this work, we present the Genome Modeling System (GMS), an analysis information management system capable of executing automated genome analysis pipelines at a massive scale. The GMS framework provides detailed tracking of samples and data coupled with reliable and repeatable analysis pipelines. The GMS also serves as a platform for bioinformatics development, allowing a large team to collaborate on data analysis, or an individual researcher to leverage the work of others effectively within its data management system. Rather than separating ad-hoc analysis from rigorous, reproducible pipelines, the GMS promotes systematic integration between the two. As a demonstration of the GMS, we performed an integrated analysis of whole genome, exome and transcriptome sequencing data from a breast cancer cell line (HCC1395) and matched lymphoblastoid line (HCC1395BL). These data are available for users to test the software, complete tutorials and develop novel GMS pipeline configurations. The GMS is available at https://github.com/genome/gms
    • 

    corecore