649 research outputs found
SUBSIDIZED FERTILIZER IN THE SAHEL: THAT IS THE QUESTION
Nutrient depletion concerns researchers and policy makers in the Sahel. A village-level programming model determines the size of fertilizer subsidy necessary to encourage farmers to apply the recommended dosage to their millet fields. Results indicate that subsidies would be extremely costly and less than half the expenditures accrue to the farm-household.Agricultural and Food Policy, Land Economics/Use,
Interview with Jean Wyatt
Jean Wyatt talks about her involvement with the County Fairhttps://digital.kenyon.edu/ps_interviews/1022/thumbnail.jp
An ALMA Survey of M-dwarfs in the Beta Pictoris Moving Group with Two New Debris Disc Detections
Previous surveys in the far-infrared have found very few, if any, M-dwarf
debris discs among their samples. It has been questioned whether M-dwarf discs
are simply less common than earlier types, or whether the low detection rate
derives from the wavelengths and sensitivities available to those studies. The
highly sensitive, long wavelength Atacama Large Millimetre/submillimetre Array
can shed light on the problem. This paper presents a survey of M-dwarf stars in
the young and nearby Beta Pictoris Moving Group with ALMA at Band 7
(880\,m). From the observational sample we detect two new sub-mm excesses
that likely constitute unresolved debris discs around GJ\,2006\,A and
AT\,Mic\,A and model distributions of the disc fractional luminosities and
temperatures. From the science sample of 36 M-dwarfs including AU\,Mic we find
a disc detection rate of 4/36 or 11.1\% that rises to
23.1\% when adjusted for completeness. We conclude that this
detection rate is consistent with the detection rate of discs around G and K
type stars and that the disc properties are also likely consistent with earlier
type stars. We additionally conclude that M-dwarf stars are not less likely to
host debris discs, but instead their detection requires longer wavelength and
higher sensitivity observations than have previously been employed.Comment: Accepted to MNRA
Autonomous quantum error correction of Gottesman-Kitaev-Preskill states
The Gottesman-Kitaev-Preskill (GKP) code encodes a logical qubit into a
bosonic system with resilience against single-photon loss, the predominant
error in most bosonic systems. Here we present experimental results
demonstrating quantum error correction of GKP states based on reservoir
engineering of a superconducting device. Error correction is made autonomous
through an unconditional reset of an auxiliary transmon qubit. The lifetime of
the logical qubit is shown to be increased from quantum error correction,
therefore reaching the point at which more errors are corrected than generated.Comment: 6 pages, 3 figures + 26 pages, 12 figure
Resolving debris discs in the far-infrared: early highlights from the DEBRIS survey
We present results from the earliest observations of DEBRIS, a Herschel Key
Programme to conduct a volume- and flux-limited survey for debris discs in
A-type through M-type stars. PACS images (from chop/nod or scan-mode
observations) at 100 and 160 micron are presented toward two A-type stars and
one F-type star: beta Leo, beta UMa and eta Corvi. All three stars are known
disc hosts. Herschel spatially resolves the dust emission around all three
stars (marginally, in the case of beta UMa), providing new information about
discs as close as 11 pc with sizes comparable to that of the Solar System. We
have combined these data with existing flux density measurements of the discs
to refine the SEDs and derive estimates of the fractional luminosities,
temperatures and radii of the discs.Comment: to be published in A&A, 5 pages, 2 color figure
SPICES: Spectro-Polarimetric Imaging and Characterization of Exoplanetary Systems
SPICES (Spectro-Polarimetric Imaging and Characterization of Exoplanetary
Systems) is a five-year M-class mission proposed to ESA Cosmic Vision. Its
purpose is to image and characterize long-period extrasolar planets and
circumstellar disks in the visible (450 - 900 nm) at a spectral resolution of
about 40 using both spectroscopy and polarimetry. By 2020/22, present and
near-term instruments will have found several tens of planets that SPICES will
be able to observe and study in detail. Equipped with a 1.5 m telescope, SPICES
can preferentially access exoplanets located at several AUs (0.5-10 AU) from
nearby stars (25 pc) with masses ranging from a few Jupiter masses to Super
Earths (2 Earth radii, 10 M) as well as circumstellar
disks as faint as a few times the zodiacal light in the Solar System
The clumpy structure of Eridani's debris disc revisited by ALMA
Eridani is the closest star to our Sun known to host a debris
disc. Prior observations in the (sub-)millimetre regime have potentially
detected clumpy structure in the disc and attributed this to interactions with
an (as yet) undetected planet. However, the prior observations were unable to
distinguish between structure in the disc and background confusion. Here we
present the first ALMA image of the entire disc, which has a resolution of
1.6"1.2". We clearly detect the star, the main belt and two point
sources. The resolution and sensitivity of this data allow us to clearly
distinguish background galaxies (that show up as point sources) from the disc
emission. We show that the two point sources are consistent with background
galaxies. After taking account of these, we find that resolved residuals are
still present in the main belt, including two clumps with a
significance -- one to the east of the star and the other to the northwest. We
perform -body simulations to demonstrate that a migrating planet can form
structures similar to those observed by trapping planetesimals in resonances.
We find that the observed features can be reproduced by a migrating planet
trapping planetesimals in the 2:1 mean motion resonance and the symmetry of the
most prominent clumps means that the planet should have a position angle of
either or . Observations over multiple epochs
are necessary to test whether the observed features rotate around the star.Comment: 16 pages, 10 figures, accepted for publication in MNRA
SPICES: Spectro-Polarimetric Imaging and Characterization of Exoplanetary Systems - From Planetary Disks To Nearby Super Earths
SPICES (Spectro-Polarimetric Imaging and Characterization of Exoplanetary Systems) is a five-year M-class mission proposed to ESA Cosmic Vision. Its purpose is to image and characterize long-period extrasolar planets and circumstellar disks in the visible (450-900 nm) at a spectral resolution of about 40 using both spectroscopy and polarimetry. By 2020/2022, present and near-term instruments will have found several tens of planets that SPICES will be able to observe and study in detail. Equipped with a 1.5 m telescope, SPICES can preferentially access exoplanets located at several AUs (0.5-10 AU) from nearby stars (less than 25 pc) with masses ranging from a few Jupiter masses to Super Earths (approximately 2 Earth radii, approximately 10 mass compared to Earth) as well as circumstellar disks as faint as a few times the zodiacal light in the Solar System
- …