201 research outputs found

    Method of establishing breast cancer brain metastases affects brain uptake and efficacy of targeted, therapeutic nanoparticles

    Get PDF
    HER2‐targeted therapies effectively control systemic disease, but their efficacy against brain metastases is hindered by their low penetration of the blood‐brain and blood‐tumor barriers (BBB and BTB). We investigate brain uptake and antitumor efficacy of transferrin receptor (TfR)‐targeted, therapeutic nanoparticles designed to transcytose the BBB/BTB in three murine models. Two known models involving intracranial (IC) or intracardiac (ICD) injection of human breast cancer cells were employed, as was a third model developed here involving intravenous (IV) injection of the cells to form whole‐body tumors that eventually metastasize to the brain. We show the method of establishing brain metastases significantly affects therapeutic BBB/BTB penetration. Free drug accumulates and delays growth in IC‐ and ICD‐formed brain tumors, while non‐targeted nanoparticles show uptake and inhibition only in IC‐established metastases. TfR‐targeted nanoparticles accumulate and significantly delay growth in all three models, suggesting the IV model maintains a more intact BBB/BTB than the other models

    Method of establishing breast cancer brain metastases affects brain uptake and efficacy of targeted, therapeutic nanoparticles

    Get PDF
    HER2‐targeted therapies effectively control systemic disease, but their efficacy against brain metastases is hindered by their low penetration of the blood‐brain and blood‐tumor barriers (BBB and BTB). We investigate brain uptake and antitumor efficacy of transferrin receptor (TfR)‐targeted, therapeutic nanoparticles designed to transcytose the BBB/BTB in three murine models. Two known models involving intracranial (IC) or intracardiac (ICD) injection of human breast cancer cells were employed, as was a third model developed here involving intravenous (IV) injection of the cells to form whole‐body tumors that eventually metastasize to the brain. We show the method of establishing brain metastases significantly affects therapeutic BBB/BTB penetration. Free drug accumulates and delays growth in IC‐ and ICD‐formed brain tumors, while non‐targeted nanoparticles show uptake and inhibition only in IC‐established metastases. TfR‐targeted nanoparticles accumulate and significantly delay growth in all three models, suggesting the IV model maintains a more intact BBB/BTB than the other models

    Qualitative Study of Changes in Alcohol Use Among HIV-Infected Adults Entering Care and Treatment for HIV/AIDS in Rural Southwest Uganda

    Get PDF
    Alcohol has a substantial negative impact on the HIV epidemic in sub-Saharan Africa, particularly in Uganda, where heavy alcohol consumption is common. Using a content analytic approach, this qualitative study characterizes changes in alcohol use among 59 HIV-infected Ugandan adults (>18 years old), who reported any alcohol use in the previous year as they entered HIV care. Most participants reported attempting to cease or reduce alcohol intake over the study period. Reasons for decreased use included advice from clinicians, interference with social obligations, threats to financial security, and negative impact on social standing. Participants reported difficulty abstaining from alcohol, with incentives to continue drinking including desire for social inclusion, stress relief, and enjoyment of alcohol. These contrasting incentives created a moral quandary for some participants, who felt ‘pulled’ between ‘good’ and ‘bad’ influences. Results suggest brief interventions addressing self-identified obstacles to change may facilitate long-term reductions in drinking in this population

    Development and characterization of a Yucatan miniature biomedical pig permanent middle cerebral artery occlusion stroke model

    Get PDF
    BACKGROUND: Efforts to develop stroke treatments have met with limited success despite an intense need to produce novel treatments. The failed translation of many of these therapies in clinical trials has lead to a close examination of the therapeutic development process. One of the major factors believed to be limiting effective screening of these treatments is the absence of an animal model more predictive of human responses to treatments. The pig may potentially fill this gap with a gyrencephalic brain that is larger in size with a more similar gray-white matter composition to humans than traditional stroke animal models. In this study we develop and characterize a novel pig middle cerebral artery occlusion (MCAO) ischemic stroke model. METHODS: Eleven male pigs underwent MCAO surgery with the first 4 landrace pigs utilized to optimize stroke procedure and 7 additional Yucatan stroked pigs studied over a 90 day period. MRI analysis was done at 24 hrs and 90 days and included T2w, T2w FLAIR, T1w FLAIR and DWI sequences and associated ADC maps. Pigs were sacrificed at 90 days and underwent gross and microscopic histological evaluation. Significance in quantitative changes was determined by two-way analysis of variance and post-hoc Tukey’s Pair-Wise comparisons. RESULTS: MRI analysis of animals that underwent MCAO surgery at 24 hrs had hyperintense regions in T2w and DWI images with corresponding ADC maps having hypointense regions indicating cytotoxic edema consistent with an ischemic stroke. At 90 days, region of interest analysis of T1 FLAIR and ADC maps had an average lesion size of 59.17 cc, a loss of 8% brain matter. Histological examination of pig brains showed atrophy and loss of tissue, consistent with MRI, as well as glial scar formation and macrophage infiltration. CONCLUSIONS: The MCAO procedure led to significant and consistent strokes with high survivability. These results suggest that the pig model is potentially a robust system for the study of stroke pathophysiology and potential diagnostics and therapeutics

    Mice Fed an Obesogenic Western Diet, Administered Antibiotics, and Subjected to a Sterile Surgical Procedure Develop Lethal Septicemia with Multidrug-Resistant Pathobionts

    Get PDF
    Despite antibiotics and sterile technique, postoperative infections remain a real and present danger to patients. Recent estimates suggest that 50% of the pathogens associated with postoperative infections have become resistant to the standard antibiotics used for prophylaxis. Risk factors identified in such cases include obesity and antibiotic exposure. To study the combined effect of obesity and antibiotic exposure on postoperative infection, mice were allowed to gain weight on an obesogenic Western-type diet (WD), administered antibiotics and then subjected to an otherwise recoverable sterile surgical injury (30% hepatectomy). The feeding of a WD alone resulted in a major imbalance of the cecal microbiota characterized by a decrease in diversity, loss of Bacteroidetes, a bloom in Proteobacteria, and the emergence of antibiotic-resistant organisms among the cecal microbiota. When WD-fed mice were administered antibiotics and subjected to 30% liver resection, lethal sepsis, characterized by multiple-organ damage, developed. Notable was the emergence and systemic dissemination of multidrug-resistant (MDR) pathobionts, including carbapenem-resistant, extended-spectrum ÎČ-lactamase-producing Serratia marcescens, which expressed a virulent and immunosuppressive phenotype. Analysis of the distribution of exact sequence variants belonging to the genus Serratia suggested that these strains originated from the cecal mucosa. No mortality or MDR pathogens were observed in identically treated mice fed a standard chow diet. Taken together, these results suggest that consumption of a Western diet and exposure to certain antibiotics may predispose to life-threating postoperative infection associated with MDR organisms present among the gut microbiota. IMPORTANCE Obesity remains a prevalent and independent risk factor for life-threatening infection following major surgery. Here, we demonstrate that when mice are fed an obesogenic Western diet (WD), they become susceptible to lethal sepsis with multiple organ damage after exposure to antibiotics and an otherwise-recoverable surgical injury. Analysis of the gut microbiota in this model demonstrates that WD alone leads to loss of Bacteroidetes, a bloom of Proteobacteria, and evidence of antibiotic resistance development even before antibiotics are administered. After antibiotics and surgery, lethal sepsis with organ damage developed in in mice fed a WD with the appearance of multidrug-resistant pathogens in the liver, spleen, and blood. The importance of these findings lies in exposing how the selective pressures of diet, antibiotic exposure, and surgical injury can converge on the microbiome, resulting in lethal sepsis and organ damage without the introduction of an exogenous pathogen

    Protein engineering to increase the potential of a therapeutic antibody Fab for long-acting delivery to the eye

    Get PDF
    To date, ocular antibody therapies for the treatment of retinal diseases rely on injection of the drug into the vitreous chamber of the eye. Given the burden for patients undergoing this procedure, less frequent dosing through the use of long-acting delivery (LAD) technologies is highly desirable. These technologies usually require a highly concentrated formulation and the antibody must be stable against extended exposure to physiological conditions. Here we have increased the potential of a therapeutic antibody antigen-binding fragment (Fab) for LAD by using protein engineering to enhance the chemical and physical stability of the molecule. Structure-guided amino acid substitutions in a negatively charged complementarity determining region (CDR-L1) of an anti-factor D (AFD) Fab resulted in increased chemical stability and solubility. A variant of AFD (AFD.v8), which combines light chain substitutions (VL-D28S:D30E:D31S) with a substitution (VH-D61E) to stabilize a heavy chain isomerization site, retained complement factor D binding and inhibition potency and has properties suitable for LAD. This variant was amenable to high protein concentration (>250 mg/mL), low ionic strength formulation suitable for intravitreal injection. AFD.v8 had acceptable pharmacokinetic (PK) properties upon intravitreal injection in rabbits, and improved stability under both formulation and physiological conditions. Simulations of expected human PK behavior indicated greater exposure with a 25-mg dose enabled by the increased solubility of AFD.v8

    Toward Improved Environmental Stability of Polymer:Fullerene and Polymer:Nonfullerene Organic Solar Cells: A Common Energetic Origin of Light- and Oxygen-Induced Degradation

    Get PDF
    With the emergence of nonfullerene electron acceptors resulting in further breakthroughs in the performance of organic solar cells, there is now an urgent need to understand their degradation mechanisms in order to improve their intrinsic stability through better material design. In this study, we present quantitative evidence for a common root cause of light-induced degradation of polymer:nonfullerene and polymer:fullerene organic solar cells in air, namely, a fast photo-oxidation process of the photoactive materials mediated by the formation of superoxide radical ions, whose yield is found to be strongly controlled by the lowest unoccupied molecular orbital (LUMO) levels of the electron acceptors used. Our results elucidate the general relevance of this degradation mechanism to both polymer:fullerene and polymer:nonfullerene blends and highlight the necessity of designing electron acceptor materials with sufficient electron affinities to overcome this challenge, thereby paving the way toward achieving long-term solar cell stability with minimal device encapsulation

    Investigating the generalisation of an atlas-based synthetic-CT algorithm to another centre and MR scanner for prostate MR-only radiotherapy

    Get PDF
    There is increasing interest in MR-only radiotherapy planning since it provides superb soft-tissue contrast without the registration uncertainties inherent in a CT–MR registration. However, MR images cannot readily provide the electron density information necessary for radiotherapy dose calculation. An algorithm which generates synthetic CTs for dose calculations from MR images of the prostate using an atlas of 3 T MR images has been previously reported by two of the authors. This paper aimed to evaluate this algorithm using MR data acquired at a different field strength and a different centre to the algorithm atlas. Twenty-one prostate patients received planning 1.5 T MR and CT scans with routine immobilisation devices on a flat-top couch set-up using external lasers. The MR receive coils were supported by a coil bridge. Synthetic CTs were generated from the planning MR images with (sCT₁v) and without (sCT) a one voxel body contour expansion included in the algorithm. This was to test whether this expansion was required for 1.5 T images. Both synthetic CTs were rigidly registered to the planning CT (pCT). A 6 MV volumetric modulated arc therapy plan was created on the pCT and recalculated on the sCT and sCT₁v. The synthetic CTs' dose distributions were compared to the dose distribution calculated on the pCT. The percentage dose difference at isocentre without the body contour expansion (sCT–pCT) was ΔDsCT = (0.9 \pm 0.8)% and with sCT₁v–pCT was ΔDsCT₁v = (-0.7 \pm 0.7)% (mean  ±  one standard deviation). The sCT₁v result was within one standard deviation of zero and agreed with the result reported previously using 3 T MR data. The sCT dose difference only agreed within two standard deviations. The mean  ±  one standard deviation gamma pass rate was ΓsCT = 96.1 \pm 2.9% for the sCT and ΓsCT₁v = 98.8 \pm 0.5% for the sCT₁v (with 2% global dose difference and 2mm distance to agreement gamma criteria). The one voxel body contour expansion improves the synthetic CT accuracy for MR images acquired at 1.5 T but requires the MR voxel size to be similar to the atlas MR voxel size. This study suggests that the atlas-based algorithm can be generalised to MR data acquired using a different field strength at a different centre

    How community ART delivery may improve HIV treatment outcomes: Qualitative inquiry into mechanisms of effect in a randomized trial of community-based ART initiation, monitoring and re-supply (DO ART) in South Africa and Uganda.

    Get PDF
    INTRODUCTION: UNAIDS fast track targets for ending the AIDS epidemic by 2030 call for viral suppression in 95% of people using antiretroviral therapy (ART) to treat HIV infection. Difficulties in linking to care following a positive HIV test have impeded progress towards meeting treatment targets. Community-based HIV services may reduce linkage barriers and have been associated with high retention and favourable clinical outcomes. We use qualitative data from The Delivery Optimization of Antiretroviral Therapy (DO ART) Study, a three-arm randomized trial of community ART initiation, monitoring and re-supply conducted in western Uganda and KwaZulu-Natal South Africa, to identify mechanisms through which community ART delivery may improve treatment outcomes, defined as viral suppression in people living with HIV (PLHIV). METHODS: We conducted open-ended interviews with a purposeful sample of 150 DO ART participants across study arms and study sites, from October 2016 to November 2019. Interviews covered experiences of: (1) HIV testing; (2) initiating and refilling ART; and (3) participating in the DO ART Study. A combined inductive content analytic and thematic approach was used to characterize mechanisms through which community delivery of ART may have contributed to viral suppression in the DO ART trial. RESULTS: The analysis yielded four potential mechanisms drawn from qualitative data representing the perspectives and priorities of DO ART participants. Empowering participants to schedule, re-schedule and select the locations of community-based visits via easy phone contact with clinical staff is characterized as flexibility. Integration refers to combining the components of clinic-based visits into single interaction with a healthcare provider. Providers" willingness to talk at length with participants during visits, addressing non-HIV as well as HIV-related concerns, is termed "a slower pace". Finally, increased efficiency denotes the time savings and increased income-generating opportunities for participants brought about by delivering services in the community. CONCLUSIONS: Understanding the mechanisms through which HIV service delivery innovations produce an effect is key to transferability and potential scale-up. The perspectives and priorities of PLHIV can indicate actionable changes for HIV care programs that may increase engagement in care and improve treatment outcomes
    • 

    corecore