'Royal College of Obstetricians & Gynaecologists (RCOG)'
Abstract
HER2‐targeted therapies effectively control systemic disease, but their efficacy against brain metastases is hindered by their low penetration of the blood‐brain and blood‐tumor barriers (BBB and BTB). We investigate brain uptake and antitumor efficacy of transferrin receptor (TfR)‐targeted, therapeutic nanoparticles designed to transcytose the BBB/BTB in three murine models. Two known models involving intracranial (IC) or intracardiac (ICD) injection of human breast cancer cells were employed, as was a third model developed here involving intravenous (IV) injection of the cells to form whole‐body tumors that eventually metastasize to the brain. We show the method of establishing brain metastases significantly affects therapeutic BBB/BTB penetration. Free drug accumulates and delays growth in IC‐ and ICD‐formed brain tumors, while non‐targeted nanoparticles show uptake and inhibition only in IC‐established metastases. TfR‐targeted nanoparticles accumulate and significantly delay growth in all three models, suggesting the IV model maintains a more intact BBB/BTB than the other models