361 research outputs found

    Ordering of apolar and polar solutes in nematic solvents

    Get PDF
    The quadrupolar splittings of deuteriated para- and ortho-dichlorobenzene (1,4-DCB and 1,2-DCB, respectively) are measured by nuclear magnetic resonance(NMR) in the nematic solvents hexyl- and pentyloxy-substituted diphenyl diacetylene (DPDA-C6 and DPDA-OC5, respectively). Measurements are taken for all four combinations of the nominally apolar (1,4-DCB) and polar (1,2-DCB) solutes in the apolar (DPDA-C6) and polar (DPDA-OC5) solvents, and throughout the entire nematic temperature range of the solutions. The temperature dependence of the second-rank orientational order parameters of the solutes are obtained from these measurements and the respective order parameters of the mesogenic cores of solvent molecules are obtained independently from carbon-13 NMR measurements. The order parameter profiles of the two solutes are found to be very different but show little variation from one solvent to the other. The results are analyzed and interpreted in terms of the underlying molecular interactions using atomistic solvent–solute potentials. The influence of electrostaticinteractions on solute ordering is directly evaluated by computing the order parameters with and without the electrostatic component of the atomistic potential. It is observed to be small. It is also found that the important interactions in these solvent–solute systems are operative over short intermolecular distances for which the representation of the partial charge distributions in terms of overall molecular dipole and quadrupole moments is not valid

    Gravity compensation in complex plasmas by application of a temperature gradient

    Full text link
    Micron sized particles are suspended or even lifted up in a gas by thermophoresis. This allows the study of many processes occurring in strongly coupled complex plasmas at the kinetic level in a relatively stress-free environment. First results are presented. The technique is also of interest for technological applications.Comment: 4 pages, 4 figures, final version to be published in Phys. Rev. Let

    Mechanics and dynamics of X-chromosome pairing at X inactivation

    Get PDF
    At the onset of X-chromosome inactivation, the vital process whereby female mammalian cells equalize X products with respect to males, the X chromosomes are colocalized along their Xic (X-inactivation center) regions. The mechanism inducing recognition and pairing of the X’s remains, though, elusive. Starting from recent discoveries on the molecular factors and on the DNA sequences (the so-called "pairing sites") involved, we dissect the mechanical basis of Xic colocalization by using a statistical physics model. We show that soluble DNA-specific binding molecules, such as those experimentally identified, can be indeed sufficient to induce the spontaneous colocalization of the homologous chromosomes but only when their concentration, or chemical affinity, rises above a threshold value as a consequence of a thermodynamic phase transition. We derive the likelihood of pairing and its probability distribution. Chromosome dynamics has two stages: an initial independent Brownian diffusion followed, after a characteristic time scale, by recognition and pairing. Finally, we investigate the effects of DNA deletion/insertions in the region of pairing sites and compare model predictions to available experimental data

    Active Chromatin Marks Are Retained on X Chromosomes Lacking Gene or Repeat Silencing Despite XIST/Xist Expression in Somatic Cell Hybrids

    Get PDF
    X-chromosome inactivation occurs early in mammalian development and results in the inactive X chromosome acquiring numerous hallmarks of heterochromatin. While XIST is a key player in the inactivation process, the method of action of this ncRNA is yet to be determined.To assess which features of heterochromatin may be directly recruited by the expression and localization of the XIST RNA we have analyzed a mouse/human somatic cell hybrid in which expression of human and mouse XIST/Xist has been induced from the active X by demethylation. Such hybrids had previously been demonstrated to disconnect XIST/Xist expression from gene silencing and we confirm maintenance of X-linked gene expression, even close to the Xist locus, despite the localized expression of mouse Xist.Loss of the active chromatin marks H3 acetylation and H3 lysine 4 methylation was not observed upon XIST/Xist expression, nor was there a gain of DNA methylation; thus these marks of facultative heterochromatin are not solely dependent upon Xist expression. Cot-1 holes, regions of depleted RNA hybridization with a Cot-1 probe, were observed upon Xist expression; however, these were at reduced frequency and intensity in these somatic cells. Domains of human Cot-1 transcription were observed corresponding to the human chromosomes in the somatic cell hybrids. The Cot-1 domain of the X was not reduced with the expression of XIST, which fails to localize to the human X chromosome in a mouse somatic cell background. The human inactive X in a mouse/human hybrid cell also shows delocalized XIST expression and an ongoing Cot-1 domain, despite X-linked gene silencing. These results are consistent with recent reports separating Cot-1 silencing from genic silencing, but also demonstrate repetitive element expression from an otherwise silent X chromosome in these hybrid cells

    Complex exon-intron marking by histone modifications is not determined solely by nucleosome distribution

    Get PDF
    It has recently been shown that nucleosome distribution, histone modifications and RNA polymerase II (Pol II) occupancy show preferential association with exons (“exon-intron marking”), linking chromatin structure and function to co-transcriptional splicing in a variety of eukaryotes. Previous ChIP-sequencing studies suggested that these marking patterns reflect the nucleosomal landscape. By analyzing ChIP-chip datasets across the human genome in three cell types, we have found that this marking system is far more complex than previously observed. We show here that a range of histone modifications and Pol II are preferentially associated with exons. However, there is noticeable cell-type specificity in the degree of exon marking by histone modifications and, surprisingly, this is also reflected in some histone modifications patterns showing biases towards introns. Exon-intron marking is laid down in the absence of transcription on silent genes, with some marking biases changing or becoming reversed for genes expressed at different levels. Furthermore, the relationship of this marking system with splicing is not simple, with only some histone modifications reflecting exon usage/inclusion, while others mirror patterns of exon exclusion. By examining nucleosomal distributions in all three cell types, we demonstrate that these histone modification patterns cannot solely be accounted for by differences in nucleosome levels between exons and introns. In addition, because of inherent differences between ChIP-chip array and ChIP-sequencing approaches, these platforms report different nucleosome distribution patterns across the human genome. Our findings confound existing views and point to active cellular mechanisms which dynamically regulate histone modification levels and account for exon-intron marking. We believe that these histone modification patterns provide links between chromatin accessibility, Pol II movement and co-transcriptional splicing

    RNA Is an Integral Component of Chromatin that Contributes to Its Structural Organization

    Get PDF
    Chromatin structure is influenced by multiples factors, such as pH, temperature, nature and concentration of counterions, post-translational modifications of histones and binding of structural non-histone proteins. RNA is also known to contribute to the regulation of chromatin structure as chromatin-induced gene silencing was shown to depend on the RNAi machinery in S. pombe, plants and Drosophila. Moreover, both in Drosophila and mammals, dosage compensation requires the contribution of specific non-coding RNAs. However, whether RNA itself plays a direct structural role in chromatin is not known. Here, we report results that indicate a general structural role for RNA in eukaryotic chromatin. RNA is found associated to purified chromatin prepared from chicken liver, or cultured Drosophila S2 cells, and treatment with RNase A alters the structural properties of chromatin. Our results indicate that chromatin-associated RNAs, which account for 2%–5% of total chromatin-associated nucleic acids, are polyA− and show a size similar to that of the DNA contained in the corresponding chromatin fragments. Chromatin-associated RNA(s) are not likely to correspond to nascent transcripts as they are also found bound to chromatin when cells are treated with α-amanitin. After treatment with RNase A, chromatin fragments of molecular weight >3.000 bp of DNA showed reduced sedimentation through sucrose gradients and increased sensitivity to micrococcal nuclease digestion. This structural transition, which is observed both at euchromatic and heterochromatic regions, proceeds without loss of histone H1 or any significant change in core-histone composition and integrity

    A Downstream CpG Island Controls Transcript Initiation and Elongation and the Methylation State of the Imprinted Airn Macro ncRNA Promoter

    Get PDF
    A CpG island (CGI) lies at the 5′ end of the Airn macro non-protein-coding (nc) RNA that represses the flanking Igf2r promoter in cis on paternally inherited chromosomes. In addition to being modified on maternally inherited chromosomes by a DNA methylation imprint, the Airn CGI shows two unusual organization features: its position immediately downstream of the Airn promoter and transcription start site and a series of tandem direct repeats (TDRs) occupying its second half. The physical separation of the Airn promoter from the CGI provides a model to investigate if the CGI plays distinct transcriptional and epigenetic roles. We used homologous recombination to generate embryonic stem cells carrying deletions at the endogenous locus of the entire CGI or just the TDRs. The deleted Airn alleles were analyzed by using an ES cell imprinting model that recapitulates the onset of Igf2r imprinted expression in embryonic development or by using knock-out mice. The results show that the CGI is required for efficient Airn initiation and to maintain the unmethylated state of the Airn promoter, which are both necessary for Igf2r repression on the paternal chromosome. The TDRs occupying the second half of the CGI play a minor role in Airn transcriptional elongation or processivity, but are essential for methylation on the maternal Airn promoter that is necessary for Igf2r to be expressed from this chromosome. Together the data indicate the existence of a class of regulatory CGIs in the mammalian genome that act downstream of the promoter and transcription start

    FINAL RESULTS OF THE EUROPEAN PROJECT FLEXCELLENCE ROLL TO ROLL TECHNOLOGY FOR THE PRODUCTION OF HIGH EFFICIENCY LOW COST THIN FILM SOLAR CELLS

    Get PDF
    This paper reports on the final main results of the Flexcellence project. The project was running for 3 years and its goal was the development of equipments and processes for cost-effective roll-to-roll production of high-efficiency flexible thin-film silicon solar cells and modules. All aspects necessary for the successful implementation of the technology could be considered simultaneously and at the end of the project, worldwide level results could be achieved; Indeed, the feasibility of wide web coating of amorphous and microcrystalline layers by roll-to-roll Very High Frequency (VHF) Plasma Enhanced Chemical Vapour Deposition (PECVD) was demonstrated with a new 50cm width VHF PECVD electrode developed during the project, nano-textured substrates with very specific and advantageous optical properties were produced, the three most promising Chemical Vapor Deposition processes for thin film silicon were investigated, solar cells up to 9.8% stabilized efficiency were deposited on low cost plastic substrates and laboratory-scale VHF PECVD reactors, new insulating and conductive inks, new parameters for laser scribing and a better-optimized laser patterning design led to improved series connection process and higher module’s output power. Finally the work made on the encapsulation processes and reliability testing led to significant breakthrough in the field of long-term outdoor stability of flexible modules on plastic foils. Most of these developments were either directly industrially exploited by the partners or subjects of further investigations for commercial use

    Sense and Antisense Transcripts of Convergent Gene Pairs in Arabidopsis thaliana Can Share a Common Polyadenylation Region

    Get PDF
    The Arabidopsis genome contains a large number of gene pairs that encode sense and antisense transcripts with overlapping 3′ regions, indicative for a potential role of natural antisense transcription in regulating sense gene expression or transcript processing. When we mapped poly(A) transcripts of three plant gene pairs with long overlapping antisense transcripts, we identified an unusual transcript composition for two of the three gene pairs. Both genes pairs encoded a class of long sense transcripts and a class of short sense transcripts that terminate within the same polyadenylation region as the antisense transcripts encoded by the opposite strand. We find that the presence of the short sense transcript was not dependent on the expression of an antisense transcript. This argues against the assumption that the common termination region for sense and antisense poly(A) transcripts is the result of antisense-specific regulation. We speculate that for some genes evolution may have especially favoured alternative polyadenylation events that shorten transcript length for gene pairs with overlapping sense/antisense transcription, if this reduces the likelihood for dsRNA formation and transcript degradation

    Inhibition of Anaplastic Lymphoma Kinase (ALK) Activity Provides a Therapeutic Approach for CLTC-ALK-Positive Human Diffuse Large B Cell Lymphomas

    Get PDF
    ALK positive diffuse large B-cell lymphomas (DLBCL) are a distinct lymphoma subtype associated with a poor outcome. Most of them feature a t(2;17) encoding a clathrin (CLTC)-ALK fusion protein. The contribution of deregulated ALK-activity in the pathogenesis and maintenance of these DLBCLs is not yet known. We established and characterized the first CLTC-ALK positive DLBCL cell line (LM1). LM1 formed tumors in NOD-SCID mice. The selective ALK inhibitor NVP-TAE684 inhibited growth of LM1 cells in vitro at nanomolar concentrations. NVP-TAE684 repressed ALK-activated signalling pathways and induced apoptosis of LM1 DLBCL cells. Inhibition of ALK-activity resulted in sustained tumor regression in the xenotransplant tumor model. These data indicate a role of CLTC-ALK in the maintenance of the malignant phenotype thereby providing a rationale therapeutic target for these otherwise refractory tumors
    corecore