2,266 research outputs found

    Decimetre dust aggregates in protoplanetary discs

    Full text link
    The growth of planetesimals is an essential step in planet formation. Decimetre-size dust agglomerates mark a transition point in this growth process. In laboratory experiments we simulated the formation, evolution, and properties of decimetre-scale dusty bodies in protoplanetary discs. Small sub-mm size dust aggregates consisting of micron-size SiO2_2 particles randomly interacted with dust targets of varying initial conditions in a continuous sequence of independent collisions. Impact velocities were 7.7 m/s on average and in the range expected for collisions with decimetre bodies in protoplanetary discs. The targets all evolved by forming dust \emph{crusts} with up to several cm thickness and a unique filling factor of 31% ±\pm3%. A part of the projectiles sticks directly. In addition, some projectile fragments slowly return to the target by gravity. All initially porous parts of the surface, i.e. built from the slowly returning fragments, are compacted and firmly attached to the underlying dust layers by the subsequent impacts. Growth is possible at impact angles from 0∘^{\circ} (central collision) to 70∘^{\circ}. No growth occurs at steeper dust surfaces. We measured the velocity, angle, and size distribution of collision fragments. The average restitution coefficient is 3.8% or 0.29 m/s ejection velocity. Ejecta sizes are comparable to the projectile sizes. The high filling factor is close to the most compact configuration of dust aggregates by local compression (∼33\sim 33%). This implies that the history of the surface formation and target growth is completely erased. In view of this, the filling factor of 31% seems to be a universal value in the collision experiments of all self-consistently evolving targets at the given impact velocities. We suggest that decimetre and probably larger bodies can simply be characterised by one single filling factor.Comment: 10 pages, 9 figure

    Elliptic Flow and Semi-hard Scattering at SPS

    Full text link
    Results on elliptic flow and two-particle correlations in the semi-hard regime are presented.Comment: 4 pages, 4 figures, 3 of which contain 2 eps file

    Growth of Dust as the Initial Step Toward Planet Formation

    Get PDF
    We discuss the results of laboratory measurements and theoretical models concerning the aggregation of dust in protoplanetary disks, as the initial step toward planet formation. Small particles easily stick when they collide and form aggregates with an open, often fractal structure, depending on the growth process. Larger particles are still expected to grow at collision velocities of about 1m/s. Experiments also show that, after an intermezzo of destructive velocities, high collision velocities above 10m/s on porous materials again lead to net growth of the target. Considerations of dust-gas interactions show that collision velocities for particles not too different in surface-to-mass ratio remain limited up to sizes about 1m, and growth seems to be guaranteed to reach these sizes quickly and easily. For meter sizes, coupling to nebula turbulence makes destructive processes more likely. Global aggregation models show that in a turbulent nebula, small particles are swept up too fast to be consistent with observations of disks. An extended phase may therefore exist in the nebula during which the small particle component is kept alive through collisions driven by turbulence which frustrates growth to planetesimals until conditions are more favorable for one or more reasons.Comment: Protostars and Planets V (PPV) review. 18 pages, 5 figure

    Regularized Ordinal Regression and the ordinalNet R Package

    Full text link
    Regularization techniques such as the lasso (Tibshirani 1996) and elastic net (Zou and Hastie 2005) can be used to improve regression model coefficient estimation and prediction accuracy, as well as to perform variable selection. Ordinal regression models are widely used in applications where the use of regularization could be beneficial; however, these models are not included in many popular software packages for regularized regression. We propose a coordinate descent algorithm to fit a broad class of ordinal regression models with an elastic net penalty. Furthermore, we demonstrate that each model in this class generalizes to a more flexible form, for instance to accommodate unordered categorical data. We introduce an elastic net penalty class that applies to both model forms. Additionally, this penalty can be used to shrink a non-ordinal model toward its ordinal counterpart. Finally, we introduce the R package ordinalNet, which implements the algorithm for this model class

    Hyperbranched phosphorus flame retardants: multifunctional additives for epoxy resins

    Get PDF

    Elliptic flow contribution to two-particle correlations at different orientations to the reaction plane

    Full text link
    Collective anisotropic particle flow, a general phenomenon present in relativistic heavy-ion collisions, can be separated from direct particle-particle correlations of different physics origin by virtue of its specific azimuthal pattern. We provide expressions for flow-induced two-particle azimuthal correlations, if one of the particles is detected under fixed directions with respect to the reaction plane. We consider an ideal case when the reaction plane angle is exactly known, as well as present the general expressions in case of finite event-plane resolution. We foresee applications for the study of generic two-particle correlations at large transverse momentum originating from jet fragmentation.Comment: 5 pages, 3 figures, to be published as Rapid Communications in Phys.Rev.C Re-submit paper to with small improvements in text for better understanding, some minor changes in notation, and correcting one formula where a summation was forgotten. One new reference, one reference to conference report removed since full paper was already reference

    Structural Glass Fin Façade St. Davids Hall, Cardiff

    Get PDF
    The remodelling of the entrance of St. David’s Hall in Cardiff features an array oftranslucent and partially pigmented structural glass fins with artistic lighting. Thefins are composed of 2 x 10 mm toughened glass incorporating a red screen frit andacid etching. The fins are 300 mm deep and up to 5 m long, supported by a stainlesssteel shoe bracket at the bottom and a fork bracket in the upper zone of the fin.Only by using a stiff Ionoplast interlayer the fins could be designed to suit the loadbearing capacity of the existing structure. The robustness and safety of the designwas demonstrated by a series of impact tests

    Competitive Copolymerization: Access to Azridine Copolymers with Adjustable Gradient Strengths

    No full text

    Interfaces within graphene nanoribbons

    Get PDF
    We study the conductance through two types of graphene nanostructures: nanoribbon junctions in which the width changes from wide to narrow, and curved nanoribbons. In the wide-narrow structures, substantial reflection occurs from the wide-narrow interface, in contrast to the behavior of the much studied electron gas waveguides. In the curved nanoribbons, the conductance is very sensitive to details such as whether regions of a semiconducting armchair nanoribbon are included in the curved structure -- such regions strongly suppress the conductance. Surprisingly, this suppression is not due to the band gap of the semiconducting nanoribbon, but is linked to the valley degree of freedom. Though we study these effects in the simplest contexts, they can be expected to occur for more complicated structures, and we show results for rings as well. We conclude that experience from electron gas waveguides does not carry over to graphene nanostructures. The interior interfaces causing extra scattering result from the extra effective degrees of freedom of the graphene structure, namely the valley and sublattice pseudospins
    • …
    corecore