110 research outputs found
Recommended from our members
Inflammation and Immune-Related Candidate Gene Associations with Acute Lung Injury Susceptibility and Severity: A Validation Study
Introduction: Common variants in genes related to inflammation, innate immunity, epithelial cell function, and angiogenesis have been reported to be associated with risks for Acute Lung Injury (ALI) and related outcomes. We tested whether previously-reported associations can be validated in an independent cohort at risk for ALI. Methods: We identified 37 genetic variants in 27 genes previously associated with ALI and related outcomes. We prepared allelic discrimination assays for 12 SNPs from 11 genes with MAF>0.05 and genotyped these SNPs in Caucasian subjects from a cohort of critically ill patients meeting criteria for the systemic inflammatory response syndrome (SIRS) followed for development of ALI, duration of mechanical ventilation, and in-hospital death. We tested for associations using additive and recessive genetic models. Results: Among Caucasian subjects with SIRS (n = 750), we identified a nominal association between rs2069832 in IL6 and ALI susceptibility (OR 1.61; 95% confidence interval [CI], 1.04–2.48, P = 0.03). In a sensitivity analysis limiting ALI cases to those who qualified for the Acute Respiratory Distress Syndrome (ARDS), rs61330082 in NAMPT was nominally associated with risk for ARDS. In terms of ALI outcomes, SNPs in MBL2 (rs1800450) and IL8 (rs4073) were nominally associated with fewer ventilator-free days (VFDs), and SNPs in NFE2L2 (rs6721961) and NAMPT (rs61330082) were nominally associated with 28-day mortality. The directions of effect for these nominal associations were in the same direction as previously reported but none of the associations survived correction for multiple hypothesis testing. Conclusion: Although our primary analyses failed to statistically validate prior associations, our results provide some support for associations between SNPs in IL6 and NAMPT and risk for development of lung injury and for SNPs in IL8, MBL2, NFE2L2 and NAMPT with severity in ALI outcomes. These associations provide further evidence that genetic factors in genes related to immunity and inflammation contribute to ALI pathogenesis
A Two-Biomarker Model Predicts Mortality in the Critically Ill with Sepsis.
RATIONALE: Improving the prospective identification of patients with systemic inflammatory response syndrome (SIRS) and sepsis at low risk for organ dysfunction and death is a major clinical challenge.
OBJECTIVES: To develop and validate a multibiomarker-based prediction model for 28-day mortality in critically ill patients with SIRS and sepsis.
METHODS: A derivation cohort (n = 888) and internal test cohort (n = 278) were taken from a prospective study of critically ill intensive care unit (ICU) patients meeting two of four SIRS criteria at an academic medical center for whom plasma was obtained within 24 hours. The validation cohort (n = 759) was taken from a prospective cohort enrolled at another academic medical center ICU for whom plasma was obtained within 48 hours. We measured concentrations of angiopoietin-1, angiopoietin-2, IL-6, IL-8, soluble tumor necrosis factor receptor-1, soluble vascular cell adhesion molecule-1, granulocyte colony-stimulating factor, and soluble Fas.
MEASUREMENTS AND MAIN RESULTS: We identified a two-biomarker model in the derivation cohort that predicted mortality (area under the receiver operator characteristic curve [AUC], 0.79; 95% confidence interval [CI], 0.74-0.83). It performed well in the internal test cohort (AUC, 0.75; 95% CI, 0.65-0.85) and the external validation cohort (AUC, 0.77; 95% CI, 0.72-0.83). We determined a model score threshold demonstrating high negative predictive value (0.95) for death. In addition to a low risk of death, patients below this threshold had shorter ICU length of stay, lower incidence of acute kidney injury, acute respiratory distress syndrome, and need for vasopressors.
CONCLUSIONS: We have developed a simple, robust biomarker-based model that identifies patients with SIRS/sepsis at low risk for death and organ dysfunction
Angiopoietin-Like4 Is a Novel Marker of COVID-19 Severity
IMPORTANCE: Vascular dysfunction and capillary leak are common in critically ill COVID-19 patients, but identification of endothelial pathways involved in COVID-19 pathogenesis has been limited. Angiopoietin-like 4 (ANGPTL4) is a protein secreted in response to hypoxic and nutrient-poor conditions that has a variety of biological effects including vascular injury and capillary leak.
OBJECTIVES: To assess the role of ANGPTL4 in COVID-19-related outcomes.
DESIGN SETTING AND PARTICIPANTS: Two hundred twenty-five COVID-19 ICU patients were enrolled from April 2020 to May 2021 in a prospective, multicenter cohort study from three different medical centers, University of Washington, University of Southern California and New York University.
MAIN OUTCOMES AND MEASURES: Plasma ANGPTL4 was measured on days 1, 7, and 14 after ICU admission. We used previously published tissue proteomic data and lung single nucleus RNA (snRNA) sequencing data from specimens collected from COVID-19 patients to determine the tissues and cells that produce ANGPTL4.
RESULTS: Higher plasma ANGPTL4 concentrations were significantly associated with worse hospital mortality (adjusted odds ratio per log
CONCLUSIONS AND RELEVANCE: ANGPTL4 is expressed in pulmonary epithelial cells and fibroblasts and is associated with clinical prognosis in critically ill COVID-19 patients
Genome Wide Association Identifies PPFIA1 as a Candidate Gene for Acute Lung Injury Risk Following Major Trauma
Acute Lung Injury (ALI) is a syndrome with high associated mortality characterized by severe hypoxemia and pulmonary infiltrates in patients with critical illness. We conducted the first investigation to use the genome wide association (GWA) approach to identify putative risk variants for ALI. Genome wide genotyping was performed using the Illumina Human Quad 610 BeadChip. We performed a two-stage GWA study followed by a third stage of functional characterization. In the discovery phase (Phase 1), we compared 600 European American trauma-associated ALI cases with 2266 European American population-based controls. We carried forward the top 1% of single nucleotide polymorphisms (SNPs) at p<0.01 to a replication phase (Phase 2) comprised of a nested case-control design sample of 212 trauma-associated ALI cases and 283 at-risk trauma non-ALI controls from ongoing cohort studies. SNPs that replicated at the 0.05 level in Phase 2 were subject to functional validation (Phase 3) using expression quantitative trait loci (eQTL) analyses in stimulated B-lymphoblastoid cell lines (B-LCL) in family trios. 159 SNPs from the discovery phase replicated in Phase 2, including loci with prior evidence for a role in ALI pathogenesis. Functional evaluation of these replicated SNPs revealed rs471931 on 11q13.3 to exert a cis-regulatory effect on mRNA expression in the PPFIA1 gene (p = 0.0021). PPFIA1 encodes liprin alpha, a protein involved in cell adhesion, integrin expression, and cell-matrix interactions. This study supports the feasibility of future multi-center GWA investigations of ALI risk, and identifies PPFIA1 as a potential functional candidate ALI risk gene for future research
Genetics of Sputum Gene Expression in Chronic Obstructive Pulmonary Disease
Previous expression quantitative trait loci (eQTL) studies have performed genetic association studies for gene expression, but most of these studies examined lymphoblastoid cell lines from non-diseased individuals. We examined the genetics of gene expression in a relevant disease tissue from chronic obstructive pulmonary disease (COPD) patients to identify functional effects of known susceptibility genes and to find novel disease genes. By combining gene expression profiling on induced sputum samples from 131 COPD cases from the ECLIPSE Study with genomewide single nucleotide polymorphism (SNP) data, we found 4315 significant cis-eQTL SNP-probe set associations (3309 unique SNPs). The 3309 SNPs were tested for association with COPD in a genomewide association study (GWAS) dataset, which included 2940 COPD cases and 1380 controls. Adjusting for 3309 tests (p<1.5e-5), the two SNPs which were significantly associated with COPD were located in two separate genes in a known COPD locus on chromosome 15: CHRNA5 and IREB2. Detailed analysis of chromosome 15 demonstrated additional eQTLs for IREB2 mapping to that gene. eQTL SNPs for CHRNA5 mapped to multiple linkage disequilibrium (LD) bins. The eQTLs for IREB2 and CHRNA5 were not in LD. Seventy-four additional eQTL SNPs were associated with COPD at p<0.01. These were genotyped in two COPD populations, finding replicated associations with a SNP in PSORS1C1, in the HLA-C region on chromosome 6. Integrative analysis of GWAS and gene expression data from relevant tissue from diseased subjects has located potential functional variants in two known COPD genes and has identified a novel COPD susceptibility locus
Sector-specific development and policy vulnerability in the Philippines
Ministry of Education, Singapore under its Academic Research Funding Tier
- …