114 research outputs found
Inversion formula and Parsval theorem for complex continuous wavelet transforms studied by entangled state representation
In a preceding Letter (Opt. Lett. 32, 554 (2007)) we have proposed complex
continuous wavelet transforms (CCWTs) and found Laguerre--Gaussian mother
wavelets family. In this work we present the inversion formula and Parsval
theorem for CCWT by virtue of the entangled state representation, which makes
the CCWT theory complete. A new orthogonal property of mother wavelet in
parameter space is revealed.Comment: 4 pages no figur
ExTrA: Exoplanets in Transit and their Atmospheres
The ExTrA facility, located at La Silla observatory, will consist of a
near-infrared multi-object spectrograph fed by three 60-cm telescopes. ExTrA
will add the spectroscopic resolution to the traditional differential
photometry method. This shall enable the fine correction of color-dependent
systematics that would otherwise hinder ground-based observations. With both
this novel method and an infrared-enabled efficiency, ExTrA aims to find
transiting telluric planets orbiting in the habitable zone of bright nearby M
dwarfs. It shall have the versatility to do so by running its own independent
survey and also by concurrently following-up on the space candidates unveiled
by K2 and TESS. The exoplanets detected by ExTrA will be amenable to
atmospheric characterisation with VLTs, JWST, and ELTs and could give our first
peek into an exo-life laboratory.Comment: 15 pages, 11 figures, SPIE 201
The quantum state vector in phase space and Gabor's windowed Fourier transform
Representations of quantum state vectors by complex phase space amplitudes,
complementing the description of the density operator by the Wigner function,
have been defined by applying the Weyl-Wigner transform to dyadic operators,
linear in the state vector and anti-linear in a fixed `window state vector'.
Here aspects of this construction are explored, with emphasis on the connection
with Gabor's `windowed Fourier transform'. The amplitudes that arise for simple
quantum states from various choices of window are presented as illustrations.
Generalized Bargmann representations of the state vector appear as special
cases, associated with Gaussian windows. For every choice of window, amplitudes
lie in a corresponding linear subspace of square-integrable functions on phase
space. A generalized Born interpretation of amplitudes is described, with both
the Wigner function and a generalized Husimi function appearing as quantities
linear in an amplitude and anti-linear in its complex conjugate.
Schr\"odinger's time-dependent and time-independent equations are represented
on phase space amplitudes, and their solutions described in simple cases.Comment: 36 pages, 6 figures. Revised in light of referees' comments, and
further references adde
The HARPS search for southern extra-solar planets XLI. A dozen planets around the M dwarfs GJ 3138, GJ 3323, GJ 273, GJ 628, and GJ 3293
Context. Low mass stars are currently the best targets for searches for rocky
planets in the habitable zone of their host star. Over the last 13 years,
precise radial velocities measured with the HARPS spectrograph have identified
over a dozen super-Earths and Earth-mass planets (msin i<10Mearth ) around M
dwarfs, with a well understood selection function. This well defined sample
informs on their frequency of occurrence and on the distribution of their
orbital parameters, and therefore already constrains our understanding of
planetary formation. The subset of these low-mass planets that were found
within the habitable zone of their host star also provide prized targets for
future atmospheric biomarkers searches. Aims. We are working to extend this
planetary sample to lower masses and longer periods through dense and long-term
monitoring of the radial velocity of a small M dwarf sample. Methods. We
obtained large numbers of HARPS spectra for the M dwarfs GJ 3138, GJ 3323, GJ
273, GJ 628 and GJ 3293, from which we derived radial velocities (RVs) and
spectroscopic activity indicators. We searched them for variabilities,
periodicities, Keplerian modulations and correlations, and attribute the
radial-velocity variations to combinations of planetary companions and stellar
activity. Results. We detect 12 planets, of which 9 are new with masses ranging
from 1.17 to 10.5 Mearth . Those planets have relatively short orbital periods
(P<40 d), except two of them with periods of 217.6 and 257.8 days. Among these
systems, GJ 273 harbor two planets with masses close to the one of the Earth.
With a distance of 3.8 parsec only, GJ 273 is the second nearest known
planetary system - after Proxima Centauri - with a planet orbiting the
circumstellar habitable zone.Comment: 19 pages, 24 figures. Astronomy and Astrophysics in pres
An Algebraic Approach to Linear-Optical Schemes for Deterministic Quantum Computing
Linear-Optical Passive (LOP) devices and photon counters are sufficient to
implement universal quantum computation with single photons, and particular
schemes have already been proposed. In this paper we discuss the link between
the algebraic structure of LOP transformations and quantum computing. We first
show how to decompose the Fock space of N optical modes in finite-dimensional
subspaces that are suitable for encoding strings of qubits and invariant under
LOP transformations (these subspaces are related to the spaces of irreducible
unitary representations of U(N)). Next we show how to design in algorithmic
fashion
LOP circuits which implement any quantum circuit deterministically. We also
present some simple examples, such as the circuits implementing a CNOT gate and
a Bell-State Generator/Analyzer.Comment: new version with minor modification
Homogeneously derived transit timings for 17 exoplanets and reassessed TTV trends for WASP-12 and WASP-4
19 pages, 4 figures, 6 tables; revised manuscript submitted to MNRAS; online-only supplements are in the download archiveWe homogeneously analyse ∼3.2 × 10 5 photometric measurements for ∼1100 transit light curves belonging to 17 exoplanet hosts. The photometric data cover 16 years (2004–2019) and include amateur and professional observations. Old archival light curves were reprocessed using up-to-date exoplanetary parameters and empirically debiased limb-darkening models. We also derive self-consistent transit and radial-velocity fits for 13 targets. We confirm the nonlinear transit timing variation (TTV) trend in the WASP-12 data at a high significance, and with a consistent magnitude. However, Doppler data reveal hints of a radial acceleration of about −7.5 ± 2.2 m s −1 yr −1, indicating the presence of unseen distant companions, and suggesting that roughly 10 per cent of the observed TTV was induced via the light-travel (or Roemer) effect. For WASP-4, a similar TTV trend suspected after the recent TESS observations appears controversial and model dependent. It is not supported by our homogeneous TTV sample, including 10 ground-based EXPANSION light curves obtained in 2018 simultaneously with TESS. Even if the TTV trend itself does exist in WASP-4, its magnitude and tidal nature are uncertain. Doppler data cannot entirely rule out the Roemer effect induced by possible distant companions.Peer reviewe
Conservação e manejo dos solos. I. Planalto Rio-grandense: considerações gerais.
bitstream/item/83946/1/CNPT-CIRCULAR-2-CONSERVACAO-E-MANEJO-DOS-SOLOS-I-PLANALTO-RIO-GRANDENSE-CONSIDERACOES-GERAIS-FL.pd
Multichannel response analysis on 2D projection views for detection of clustered microcalcifications in digital breast tomosynthesis
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/134871/1/mp8694.pd
Ectodysplasin A in Biological Fluids and Diagnosis of Ectodermal Dysplasia
The tumor necrosis factor (TNF) family ligand ectodysplasin A (EDA) is produced as 2 full-length splice variants, EDA1 and EDA2, that bind to EDA receptor (EDAR) and X-linked EDA receptor (XEDAR/EDA2R), respectively. Inactivating mutations in Eda or Edar cause hypohidrotic ectodermal dysplasia (HED), a condition characterized by malformations of the teeth, hair and glands, with milder deficiencies affecting only the teeth. EDA acts early during the development of ectodermal appendages-as early as the embryonic placode stage-and plays a role in adult appendage function. In this study, the authors measured EDA in serum, saliva and dried blood spots. The authors detected 3- to 4-fold higher levels of circulating EDA in cord blood than in adult sera. A receptor binding-competent form of EDA1 was the main form of EDA but a minor fraction of EDA2 was also found in fetal bovine serum. Sera of EDA-deficient patients contained either background EDA levels or low levels of EDA that could not bind to recombinant EDAR. The serum of a patient with a V262F missense mutation in Eda, which caused a milder form of X-linked HED (XLHED), contained low levels of EDA capable of binding to EDAR. In 2 mildly affected carriers, intermediate levels of EDA were detected, whereas a severely affected carrier had no active EDA in the serum. Small amounts of EDA were also detectable in normal adult saliva. Finally, EDA could be measured in spots of wild-type adult or cord blood dried onto filter paper at levels significantly higher than that measured in EDA-deficient blood. Measurement of EDA levels combined with receptor-binding assays might be of relevance to aid in the diagnosis of total or partial EDA deficiencies
Utilizing a Global Network of Telescopes to Update the Ephemeris for the Highly Eccentric Planet HD 80606 b and to Ensure the Efficient Scheduling of JWST
The transiting planet HD 80606 b undergoes a 1000 fold increase in insolation during its 111 days orbit due to it being highly eccentric (e = 0.93). The planet's effective temperature increases from 400 to over 1400 K in a few hours as it makes a rapid passage to within 0.03 au of its host star during periapsis. Spectroscopic observations during the eclipse (which is conveniently oriented a few hours before periapsis) of HD 80606 b with the James Webb Space Telescope (JWST) are poised to exploit this highly variable environment to study a wide variety of atmospheric properties, including composition, chemical and dynamical timescales, and large scale atmospheric motions. Critical to planning and interpreting these observations is an accurate knowledge of the planet's orbit. We report on observations of two full-transit events: 2020 February 7 as observed by the TESS spacecraft and 2021 December 7-8 as observed with a worldwide network of small telescopes. We also report new radial velocity observations which, when analyzed with a coupled model to the transits, greatly improves the planet's orbital ephemeris. Our new orbit solution reduces the uncertainty in the transit and eclipse timing of the JWST era from tens of minutes to a few minutes. When combined with the planned JWST observations, this new precision may be adequate to look for non-Keplerian effects in the orbit of HD 80606 b
- …
