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ABSTRACT  

The TNF family ligand ectodysplasin A (EDA) is produced as two full-length splice 

variants, EDA1 and EDA2, that bind to EDA receptor (EDAR) and X-linked EDA receptor 

(XEDAR/EDA2R) respectively. Inactivating mutations in the genes EDA or EDAR genes cause 

hypohidrotic ectodermal dysplasia (HED) with malformation of teeth, hair and glands, while 

milder deficiencies affect teeth only. EDA acts early during development of ectodermal 

appendages as early as the embryonic placode stage, and also plays a role in adult appendage 

function. We detected three- to fourfold higher levels of circulating EDA in cord blood than in 

adult sera. A receptor binding-competent form of EDA1 was the main form of EDA, but a minor 

fraction of EDA2 was also found in fetal bovine serum. Sera of EDA-deficient patients contained 

either background EDA levels or low levels of EDA that could not bind to recombinant EDAR. 

Serum of a patient with a V262F missense mutation in EDA causing a milder form of X-linked 

HED (XLHED) contained low levels of EDA capable of binding to EDAR. In two mildly 

affected carriers, intermediate levels of EDA were detected, while a severely affected carrier had 

no active EDA in serum. Small amounts of EDA were also detectable in normal adult saliva. 

Finally, EDA could be measured in spots of wild-type adult or cord blood dried onto filter paper 

at levels significantly higher than in EDA-deficient blood. Measurement of EDA levels 

combined with a receptor-binding assay might be of relevance to aid diagnosis of total or partial 

EDA deficiencies. 
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INTRODUCTION 

EDA is a TNF family member important for the development of ectodermal appendages in 

vertebrates (Harris et al. 2008; Kere et al. 1996; Monreal et al. 1998; Srivastava et al. 1997). 

EDA-deficiency in humans causes X-linked hypohidrotic ectodermal dysplasia (XLHED), a 

congenital disorder characterized by hypoplastic hair, teeth and sweat glands (Visinoni et al. 

2009). The EDA protein consists of a short intracellular domain, a membrane spanning segment, 

a stalk region, a consensus furin cleavage site, a short proteoglycan-interacting sequence, an 

oligomerizing collagen domain and a C-terminal TNF homology domain that forms homotrimers 

and binds to receptors (Chen et al. 2001; Schneider et al. 2001a; Swee et al. 2009). Two EDA 

splice variants differing by only two amino acids (Yan et al. 2000) bind to distinct receptors: 

EDA1 binds to EDA receptor (EDAR), and EDA2 binds to X-linked EDAR (XEDAR/EDA2R) 

(Tucker et al. 2000; Yan et al. 2000). EDA1-EDAR interactions mediate development of 

ectodermal appendages, while EDA2-XEDAR may serve as downstream effectors of the p53-

induced anti-proliferative response in colon cancer (Tanikawa et al. 2010). Fully or partially 

inactivating mutations of the gene EDA provoke XLHED and non-syndromic tooth agenesis, 

respectively (Mues et al. 2010). Remarkably, human, dog, cow and mouse EDA are 100% 

identical in their 145 amino acid-long receptor-binding domains, 98% identical to chicken EDA 

and 63% identical (82% similar) to a fish EDA (Gasterosteus acuelatus). During hair placode 

formation in mice, EDA is one of the most apical signaling molecules downstream of Wnt. EDA 

is in turn essential, via NF-κB activation, for sustained Wnt activity (Zhang et al. 2009). Primary 

hair placodes do not form in Eda-deficient mice, teeth are present but small and abnormally 

shaped, sweat glands are missing, and a number of other glands are either absent or reduced 

(Gruneberg 1971).  
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Transgenic expression of EDA1 in the skin of wild-type mice induced supernumerary tooth 

and mammary gland formation, longer hair and nails, and enlarged sebaceous glands (Mustonen 

et al. 2003). In Eda-deficient mice, the transgene stimulated formation of guard hairs, sweat 

glands and induced sebaceous glands hypertrophy (Cui et al. 2003). Repression of transgenic 

EDA1 in adult mice normalized sebaceous glands, indicating a limiting role of EDA1 also in 

some adult structures (Cui et al. 2003). The prenatal or perinatal, but not adult, administration of 

recombinant EDA1 or of agonist anti-EDAR antibodies to Eda-deficient mice or dogs 

ameliorated the EDA-deficient phenotype, paving the way for protein replacement therapy in 

XLHED (Casal et al. 2007; Gaide and Schneider 2003; Kowalczyk et al. 2011). Thus, early 

diagnosis of EDA-deficiency in humans is warranted, particularly since an EDA replacement 

drug has been under investigation for use in newborn infants with XLHED 

(www.clinicaltrials.gov NCT01775462 and NCT01992289). However, early diagnosis of 

XLHED is not trivial.  If family history suggests a risk, and if this is known to the doctor, 

diagnosis can sometimes be established prenatally when ultrasound examination reveals a 

significant deficit of tooth germ formation (Wunsche et al. 2015), or at birth when an array of 

clinical features such as absence of sweat gland openings in the epidermis, skin dryness or 

specific craniofacial abnormalities can be observed. Sometimes, diagnosis is only made in the 

second year of life upon failure of tooth eruption. Definitive evidence of XLHED as opposed to 

other forms of ectodermal dysplasia or tooth agenesis is provided by identification of the 

causative mutation in EDA (Burger et al. 2014; Schneider et al. 2011). 

In this study, we measured EDA in serum, saliva and dried blood spots. We report the 

detection of circulating EDA that is capable of binding to receptors, contains the protein’s 

collagen domain and displays a predominance of the EDA1 over the EDA2 isoform. EDA levels 
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were high in fetuses and newborn, lower in adults, and very low to absent in XLHED patients, in 

line with the known roles of EDA during development, adulthood and disease. These results 

indicate the possibility of diagnosing XLHED by measuring EDA and its receptor-binding ability 

in biological fluids. 

 

MATERIAL AND METHODS 

Animals – K14-Eda-A1 transgenic mice, Edar-deficient OVE1B mice, Eda-deficient Tabby 

mice and their wild-type controls were as described (Kowalczyk et al. 2011; Kowalczyk-Quintas 

et al. 2014b; Mustonen et al. 2003). Mice were handled according to guidelines and under the 

authorization of the Swiss Federal Food Safety and Veterinary Office (authorization 1370.6 to 

PS) or in accordance with the guidelines and with approval from the Finnish National Board of 

Animal Experimentation.  

Human samples – Unstimulated saliva and serum samples were obtained from adult patients 

affected by XLHED, carriers of EDA mutations or non-affected controls (age range: 21 to 52 

years-old for all groups). Sera were also prepared from cord blood of neonates of from cord 

blood of pre-term babies. In some cases, blood was applied directly onto filter paper cards for 

blood sampling (Perkin-Elmer). Samples were obtained with informed consent at the University 

Hospital of Erlangen. All samples were stored at -70°C. Analyses were performed in Lausanne 

under the approval of the Commission cantonale d’éthique de la recherche sur l’être humain, 

Lausanne.   

Antibodies, recombinant proteins and plasmids – Anti-EDA antibodies EctoD2 and 

biotinylated EctoD3, EDAR-Fc, XEDAR-Fc and BMCA-Fc were as previously described 

(Kowalczyk-Quintas et al. 2014b; Schneider et al. 2001a; Schneider et al. 2001b). Fc-EDA1 
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(EDI200) was provided by Edimer Pharmaceuticals. Anti-EDA monoclonal antibody Renzo-2 is 

commercially available (Enzo Life Sciences, ALX-522-038). Sequences of proteins encoded by 

plasmids used for this study are listed in appendix Table 1. 

Affinity purification of EDA –EctoD2 and EctoD3 were coupled at 5 mg/ml to NHS-

activated Sepharose (GE Healthcare), used to capture EDA in 500 ml of fetal calf serum, washed 

extensively with PBS and eluted with 50 mM citrate-NaOH pH 2.7. The eluate was neutralized 

with 1 M Tris-HCl pH9, concentrated and buffer was exchanged for PBS with a 30 kDa cutoff 

centrifugal concentrator device. 

Deglycosylation – Denatured EDA samples were digested with peptide N-glycanase F 

according to manufacturer’s instructions (NewEngland Biolabs).  

Immunoprecipitations and Western blot – EDA was immuno-precipitated for 16 h at 4°C 

with 10 µl of Protein A-Sepharose beads and 1 µg of EDAR-Fc or of XEDAR-Fc in 500 µl of 

PBS. Beads were collected in mini columns (Schneider et al. 2014), washed with PBS, and 

eluted with 15 µl of 100 mM citrate-NaOH pH 3. The eluate was neutralized with 5 µl of 1 M 

Tris-HCl pH9. EDA was also incubated for 16 h at 4°C with 10 µl of heparin-Sepharose beads in 

500 µl of PBS. Beads were washed with PBS and eluted with PBS, 0.8 M NaCl. Western blot 

was performed according to standard protocols with samples heated in denaturing and reducing 

conditions for 5 min at 70°C, because EDA tends to aggregate when boiled. Western blots were 

revealed with Renzo-2 at 1 µg/ml, followed by horseradish peroxidase-coupled anti-mouse 

secondary reagent and ECL. When required, the membrane was probed again with horseradish 

peroxidase-coupled anti-human IgG.  

AlphaLISA – Five µl of samples (e.g. serum diluted 1/2 or undiluted saliva with or without 

pre-depletion on ELISA plates coated with BCMA-Fc, EDAR-Fc or EctoD2) were mixed with 
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biotinylated EctoD3 at 15 ng/ml and 0.5 µg of EctoD2 acceptor beads, and signal was recorded 

with an Enspire plate reader (Perkin-Elmer). Standard curves were generated with Fc-EDA1 

diluted into buffer or into XLHED serum or saliva as indicated. For the measurement of EDA in 

dry blood spots, blood was eluted from filters papers in PBS, then immunoprecipitated with 0.2 

µl of EctoD2 acceptor beads for 1 h at room temperature prior to measurement by AlphaLISA. 

Further details are available in the online supplemental appendix.  

Gel permeation chromatography – 300 µl of serum from human cord blood with high EDA 

content, or from normal human serum with low EDA content, were loaded onto a Superdex 200 

column equilibrated and eluted in PBS. 1 ml fractions were collected. EDA was measured in 

these fractions by AlphaLISA.  

Statistics – Statistics were performed by one-way analysis of variance with Bonferroni’s 

multiple comparison tests using Prism. P values lower than 0.05 were considered significant. 

 

RESULTS  

Specific detection of EDA in serum reveals higher circulating EDA levels in the fetal and 

newborn stages compared to adult – ELISA experiments using a previously characterized pair of 

mouse IgG1 anti-EDA antibodies (EctoD2 and EctoD3) (Kowalczyk-Quintas et al. 2014b) 

indicated the feasibility of detecting endogenous EDA in adult serum (appendix Fig. 1). When 

used in a homogenous AlphaLISA assay (Eglen et al. 2008), this pair of antibodies detected a 

standard of Fc-EDA1 diluted in EDA-deficient serum with a sensitivity of about 0.1 ng/ml in as 

little as 2.5 µl of serum. Signals obtained in a panel of XLHED sera were consistently very low 

(Fig. 1A,B). In this cohort of XLHED patients, the majority is not expected to produce any 

soluble EDA protein as a consequence of frameshift mutation, exon deletion or duplication, 
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splice site mutation or mutations affecting the furin cleavage site (Table 1). In two patients with 

point mutations in the extracellular domain that may preserve the EDA protein, EDA levels were 

higher (0.15 ng/ml) and similar to those found in three carriers, one of which was severely 

affected by XLHED. These levels remained lower than the average EDA level in adult sera (0.7 

ng/ml) or in cord blood sera (2.5 ng/ml) (Fig. 1B). We found no gender differences of EDA 

levels in wild-type humans, neither at birth nor in adults. EDA levels reached 4 ng/ml in cord 

blood sera of two pre-term babies, similar to what was measured in fetal calf serum. EDA was 

present at only 1.5 ng/ml in a third pre-term baby whose pre-term delivery was due to a 

generalized infection. Taken together, these results indicate that circulating EDA levels are 

significantly higher in premature and newborn babies than in adults, and very low or at 

background in EDA-deficient XLHED patients (Fig. 2C). 

 

Low levels of circulating EDA in mice – EDA levels in wild-type adult mouse serum were 

low (0.13 ng/ml), but higher than those in an EDA-deficient serum. Curiously, circulating EDA 

levels in EDAR-deficient or in EDA1-transgenic mice, where the transgene is expressed in the 

skin under a keratin-14 promoter, were not different from wild-type (Fig. 1D). 

 

A fraction of circulating wild-type EDA is capable of binding to EDAR  – Antibodies used 

in this study recognize and inhibit native forms of both EDA1 and EDA2 and therefore cannot 

distinguish between the protein products of the two splice variants (Kowalczyk-Quintas et al. 

2014b). EDAR however specifically binds to EDA1, as does its recombinant protein EDAR-Fc 

(Schneider et al. 2001a; Yan et al. 2000). Using a set of three different pre-depletions, including 

one on EDAR-Fc, it was possible to estimate that about three quarters (52 - 94%) of wild-type 
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EDA in the circulation can bind to EDAR. We have not been able to further characterize the 

fraction of EDA that does not bind to EDAR-Fc: this could be inactive EDA, EDA in complex 

with endogenous soluble receptors or heteromers of EDA1 and EDA2. Pre-depletion with 

EDAR-Fc was also successful in two carriers and in a patient with the point mutation V262F 

(Fig. 2A-C). The later XLHED patient was rather mildly affected, with oligodontia and 

moderately reduced ability to sweat. Binding to EDAR was however defective in a severely 

affected carrier, in a patient with the point mutation M364R and in a few XLHED patients with 

EDA levels slightly above background, suggesting that these circulating EDA molecules are not 

functional (Fig. 2B,C). The patient with the mutation M364R is severely affected, with only 5 

teeth and very little ability to sweat. In conclusion, the quantification of serum EDA protein 

concentration is in itself a valuable biomarker of EDA function, but combined with the 

measurement of EDA receptor-binding activity can further distinguish between hypomorphic and 

fully inactivating mutations. 

 

Detection of EDA in saliva and in dry blood spots – Low levels of EDA, which could be 

depleted on EDAR-Fc, were detected in wild-type but not in XLHED adult saliva (appendix Fig. 

2). Interestingly, signals obtained with recombinant Fc-EDA1 were 4- to 5-fold lower in EDA-

deficient serum compared to saliva or assay buffer (Fig. 2D). Thus, as exemplified for fetal calf 

serum, EDA in serum is underestimated about 5-fold (Appendix Fig. 2B) unless the standard 

curve is also measured in (EDA-deficient) serum (Fig. 1A). Moreover, EDA could be detected in 

dried blood samples. For this purpose, dry blood was eluted from filter paper in PBS, then 

immunoprecipitated with EctoD2-coupled AlphaLISA acceptor beads to circumvent the 

quenching effect of concentrated hemoglobin, and measured for EDA by AlphaLISA. In this 



  Endogenous ectodysplasin A  
 

 10 

procedure, the yield of Fc-EDA immunoprecipitation was about 50%, recovery of dry Fc-EDA 

from filter paper was about a third, and the combined yield of both procedures approached 20%  

(appendix Fig. 2). With this protocol, signals were obtained in wild-type adult blood and wild-

type cord blood eluted and immuno-precipitated from 6-mm diameter filter paper punches, while 

only background signals were found with an adult XLHED blood processed in parallel (Fig. 3C). 

These measures repeated at different time points after blood collection always showed higher 

EDA signals in wild-type adult or cord blood than in the control XLHED blood (R156QfsX2) 

from 3 days to more than a month after blood collection (Fig. 3C). EDA signals detected in cord 

blood were sometimes, but not always, higher than those of adult blood. The qualitative nature of 

these results perhaps reflects a sub-optimally normalized procedure. In conclusion, these results 

demonstrate the feasibility of measuring EDA in dry blood spots and in saliva.  

 

Circulating bovine EDA is N-glycosylated, contains the collagen domain and exists 

predominantly as the EDA1 isoform with a minority of the EDA2 isoform – Circulating 

endogenous EDA was affinity-purified from fetal calf serum on anti-EDA antibodies, then 

immuno-precipitated with recombinant EDAR-Fc or XEDAR-Fc. Flag-tagged forms of EDA1 

and EDA2 used as controls bound to EDAR-Fc and XEDAR-Fc, respectively (Fig. 4A). 

Endogenous EDA from two independent EDA preparations precipitated preferentially with 

EDAR-Fc and to a lesser extent with XEDAR-Fc (Fig 4A). Endogenous EDA migrated with a 

molecular weight of about 35 kDa under denaturing conditions, larger than Flag-EDA1, which 

contains only the TNF homology domain, but at the size of transfected, naturally processed full-

length EDA1, suggesting that both the collagen and TNF homology domains are present in 

circulating EDA. Deglycosylation with peptide N-glycanase F reduced the size of endogenous 
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EDA from 35 to 29 kDa, and that of a minor fragment of 22 kDa to 18 kDa (Fig. 4B). This 

smaller fragment probably corresponds to the TNF homology domain alone. Recombinant EDA 

is not fully N-glycosylated, generating a characteristic doublet in the Western blot (Fig. 4A) 

(Schneider et al. 2001a), while endogenous EDA is almost fully N-glycosylated. The absence of 

intermediate glycosylation products between the 22 and 18 kDa bands in partially digested EDA 

further suggests that endogenous EDA, like transfected EDA expressed in cultured cells, carries 

a single N-linked glycan (Fig. 4B). 

Endogenous EDA and naturally cleaved EDA both bound to heparin-Sepharose, while a 

mutant of the proteoglycan-binding domain hardly did so (Fig. 4C). Flag-tagged EDA1 and 

EDA2 lacking the proteoglycan-binding domain did not bind to heparin-Sepharose either (Fig. 

4C). These data suggest that endogenous EDA has a functional proteoglycan-binding domain. 

Finally, the native size of human EDA in cord blood serum was estimated by size exclusion 

chromatography to be ~200 kDa (Fig. 4D). A calculated size ratio of 5.7 between native and 

denatured EDA suggests that EDA circulates in blood as a hexamer or, if the collagen domain 

confers to the protein a rod-like shape, as a non-globular trimer. In summary, endogenous bovine 

EDA is a soluble glycoprotein containing the proteoglycan-binding, collagen and TNF homology 

domains with a predominance of the EDA1 over the EDA2 isoform. Its posttranslational 

modifications appear to be more homogeneous that those of transfected EDA expressed in 

cultured cell lines.  

 

DISCUSSION 

In this study, high levels of EDA were detected in sera of fetuses and newborns, in good 

agreement with the known timing of EDA function in the development of ectodermal 
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appendages (Mikkola 2008). Lower levels of EDA were also found in adult sera and only 

background levels in XLHED sera. The size of endogenous EDA under native and denaturing 

conditions, its glycosylation and receptor binding patterns correspond to what we know about the 

protein (Kowalczyk-Quintas and Schneider 2014).  

Expression of EDA mRNA has been reported in various adult human tissues (Montonen et 

al. 1998) and in adult mice EDA and EDAR have been implicated in regulation of the hair cycle 

(Fessing et al. 2006). In addition, hair-associated sebaceous glands responded to EDAR 

stimulation, suggesting that sebaceous glands are likely targets of EDA in the adult (Kowalczyk-

Quintas et al. 2014a). Other tissue candidates for the action of EDA in adults are salivary glands 

(Hill et al. 2014) and wounded skin (Garcin et al. 2016) that both respond to EDAR agonists. It 

therefore makes sense to find EDA expressed in adults.  

The measurement of EDA combined with pre-depletion on recombinant receptors showed 

that the main circulating isoform is EDA1, but that lower levels of EDA2 are also present in fetal 

calf serum. In principle, depletion of sera with recombinant XEDAR should give direct 

information on the proportion of circulating EDA2, but in practice the reduction observed was 

too low for reliable interpretation. The co-existence of EDA1 and EDA2 in serum is interesting 

in terms of possible heteromer formation. In the TNF family, heteromers of lymphotoxin-

α/lymphotoxin-β as well as heteromers of BAFF/APRIL, whose receptor binding specificities 

can be distinct from those of homotrimers, have been structurally characterized (Schuepbach-

Mallepell et al. 2015; Sudhamsu et al. 2013). It will be interesting in the future to investigate 

whether EDA1/EDA2 heteromers can be produced, and, if so, what receptor(s) they bind.   

In the adult, EDA expression has been described in skin epithelium, hair follicles and teeth, 

but also in organs where EDA has no known functions such as the central nervous system, 
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kidney or prostate (Montonen et al. 1998). The origin of circulating EDA reported here in three 

different species remains to be determined. It may not originate exclusively from the skin 

because mice overexpressing EDA1 in the epidermis, where it induces pronounced 

morphological alterations in various appendages (Mustonen et al. 2003), had normal levels of 

circulating EDA. The same was true for complete deletion of the Edar gene in Ove1B mice 

(Headon and Overbeek 1999), indicating that endogenous EDAR does not deplete or regulate 

EDA levels in the circulation. EDA contains a basic domain that promotes its binding to heparin 

and proteoglycans (Swee et al. 2009), and it is conceivable that EDA produced in the skin, even 

in EDA1 transgenic mice, exerts its effects locally without systemic implication.  

Regarding diagnosis of EDA-deficiency, the detection of EDA in serum, or in dried blood 

spots, offers an alternative to phenotypic or genetic screening of newborns. In routine dental 

practice, blood samples are not taken, but saliva is readily accessible. The measurement of EDA 

in saliva could provide useful information with regard to the cause of missing teeth. Selective 

tooth agenesis can be caused, among other reasons, by mutations in genes encoding master 

regulators of tooth formation such as PAX9 and MSX1, elements of the WNT signaling pathway 

such as WNT10A or AXIN2, the WNT target BMP4, or EDA, EDAR or EDARADD (Bergendal 

et al. 2011; Huang et al. 2013; Stockton et al. 2000; van den Boogaard et al. 2012). In cases of 

non-syndromic tooth agenesis, the EDA protein must be produced in vivo at least to some extent, 

however its capacity to bind to EDAR is often decreased (Mues et al. 2010). The measurement of 

EDA with or without pre-depletion on recombinant EDAR provides information on both 

expression levels and functionality of EDA. 

In conclusion, this study provides the first description of soluble EDA in blood and saliva, 

characterizes several of its properties including receptor binding, and documents its expression 
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levels throughout life and disease. Although the origin and function of circulating EDA remains 

to be determined, its concentration and receptor-binding capacity correlate well with its function 

in vivo and could therefore be used as specific biomarkers to facilitate the diagnosis of XLHED 

or unexplained tooth agenesis.   
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TITLES AND LEGENDS TO FIGURES 

 
Figure 1. Human EDA levels are higher in cord blood than in the adult circulation. 

A. EDA was measured in human sera, using Fc-EDA1 diluted in EDA-deficient human serum as 

a standard. EDA was also measured in fetal calf sera, and in sera of adult mice of the indicated 

genotypes. The pre-term baby at 29 weeks suffered from a generalized infection (infect). The 

child was 7 years old. Mean of duplicates ± SEM. Black circles: males. White circles: females. 

B. Blow up of the graph with XLHED and related sera. Letters refer to sample ID of Table 1. 

C. Comparison of the mean ± SEM of XLHED (HED; n=12), wild-type adult (WT; n=27), cord 

blood (n=12), pre-term (n=3) and fetal calf (n=3) sera. A one-way ANOVA with Bonferroni’s 

multiple comparison tests was performed. *: p<0.05, ** p<0.01, *** p<0.001. 

D. Blow-up of the graph with mouse sera. def: deficient. Tg: transgenic. 

This experiment was performed twice with comparable results. 

 

Figure 2. Wild-type, but not mutated EDA in serum can bind to EDAR.  

A. EDA levels in normal adult sera after pre-depletion on a control protein (BCMA-Fc), or on 
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EDAR-Fc, or on EctoD2. Percentages of depletion with EDAR-Fc are indicated at the bottom. 

Mean of duplicates ± SEM. 

B. Same as panel A, but for adult XLHED and related sera. Letters refer to sample ID of Table 1. 

Mean of duplicates ± SEM. Percentage depletion was not calculated for patient “b”, because the 

lack of depletion on EctoD2 questioned the origin of this signal. 

C. Scatter plot representation of the percentage of EDA depletion on EDAR-Fc for the indicated 

groups of persons. 

D. AlphaLISA was used to measure Fc-EDA1 at different concentrations is assay buffer (black 

circles), or in saliva of an XLHED patient (opened triangles), or in serum of an XLHED patient 

(black inverted triangles). The lower limit of quantification (LLQ) is shown by a dotted line. 

Experiments of panels A to D were performed once in the format presented. Similar results were 

obtained with the analysis of isolated saliva samples. Mean of duplicates ± SEM. 

 

Figure 3. Detection of endogenous EDA in blood dried onto filter paper. 

Blood from a normal adult (A), blood from an adult XLHED patient (X) and normal cord blood 

(C) were dried onto filter paper. 3, 10, 17, 31 and 45 days later, blood was eluted from 6 mm 

diameter punches of blood-impregnated filter paper, immuno-precipitated with EctoD2-coupled 

AlphaLISA acceptor beads and tested for the presence of EDA. 

This experiment was performed once in this format. Mean of duplicates ± SEM.  

 

Figure 4. Biochemical characterization of endogenous EDA in human and bovine sera. 

A. EDA from fetal calf serum was affinity-purified on immobilized EctoD2 and EctoD3, while 

recombinant EDA (naturally cleaved or Flag-tagged) expressed in 293T cells were collected in 
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conditioned supernatant. EDA proteins were immuno-precipitated with EDAR-Fc (E) or 

XEDAR-Fc (X) and analyzed by Western blot with anti-EDA Renzo2 (top panels). EDAR-Fc 

and XEDAR-Fc were detected by re-probing the membrane with anti-Fc. Amino acid residues of 

EDA are indicated in brackets. PG mut: mutated proteoglycan-binding domain. GKKA, GEEA: 

relevant wild-type and mutated sequences in the proteoglycan-binding domain of EDA.  

B. EDA proteins were (partially) digested with or without peptide N-glycanase F (PNGaseF) and 

analyzed by anti-EDA Western blot. 

C. The indicated EDA protein were captured on heparin-coupled beads, eluted with salt, and 

analyzed by Western blot anti-EDA. Mut: mutated proteoglycan-binding site. 

D. Gel filtration elution profiles of human sera with high (cord serum) or low (adult serum) EDA 

content. EDA was detected in fractions by AlphaLISA (single measures). Elution positions of 

molecular weight standards (in kDa) are indicated. EDA concentration in fraction of the elution 

of control serum was probably below the detection limit. 

Experiments of panels A to D were all performed three times with similar results. 
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