1,772 research outputs found

    Design, Construction, and Monitoring of the Ground-Water Resources of a Large Mine-Spoil Area: Star Fire Tract, Eastern Kentucky

    Get PDF
    By the year 2010, the Star Fire mining operation in Knott, Breathitt, and Perry Counties in eastern Kentucky, which uses mountaintop-removal and hollow-fill mining techniques, will have created approximately 5,000 acres of gently rolling terrain that could support alternative land uses. The present research is centered on approximately 1,000 acres of spoil created since mining began in 1981. An aquifer fed by both ground and surface water will be created within the spoil. Spoil-handling techniques such as cast blasting, dragline placement, end dumping by trucks, and surface grading have created porous coarse-rock zones within the spoil through which ground water can move. A vertical rubble chimney in the spoil has been constructed of durable rock to enhance infiltration to the ground-water reservoir through a surface infiltration basin. Fourteen monitoring wells have been installed along with flumes to gage surface-water discharge and monitor water quantity and quality at the site. Dye-tracing studies have identified ground-water flow paths and flow velocities. A preliminary assessment of the water resources at the site indicates that a stable water table has been created at the mined site. Based on an average saturated thickness of 21 feet for the entire site and an estimated porosity of 20 percent, the spoil stores approximately 4,200 acre-feet (1.37 billion gallons) of water. Dye-tracing data, hydraulic gradients, and water-quality data indicate that ground water moves more slowly in the spoil\u27s interior; from there it flows down into the hollow fills before discharging as springs along the bottom of the spoil. The springs discharge approximately 1 million gallons per day under normal flow conditions, and discharges of approximately 5 million gallons per day have been measured a week after rainfall events

    Hydrogeologic Conditions Around Deep Aeration Lagoons at the Bardstown Wastewater Treatment Plant

    Get PDF
    The hydrogeologic conditions around the Bardstown Sewage Treatment Plant were studied from August 1996 through December 1997. Hydraulic and geochemical data were collected from eight monitoring wells and four surface-water monitoring sites on the plant property. There is a large hydraulic gradient between the lagoons at the plant and the surrounding stream, Town Creek. Initial water-level measurements in wells surrounding the site suggest no major leakage from the lagoons, however. Neither flowing artesian conditions nor unusually high water levels were observed in any of the wells. Water-level measurements collected by data loggers showed that shallow wells responded quickly to recharge, whereas bedrock wells were relatively unresponsive throughout most of the observation period. Slug tests indicate that the hydraulic conductivities of the unconsolidated material monitored by the shallow wells are several orders of magnitude greater than for the underlying bedrock. Surface-water flow measurements indicate that Town Creek is a losing stream adjacent to the lagoons. This conclusion is supported by hydraulic data from the monitoring wells. These data suggest that it is unlikely the lagoons are leaking significantly into Town Creek. Town Creek appears to become a gaining stream along its lowest reaches on the northwestern side of the plant property. Interpretation of chloride, bromide, fluoride, and major-ion chemistry data indicates that the water chemistry in the shallow wells is not affected significantly by the lagoons. Well-water chemistry is influenced by Town Creek, which recharges the shallow alluvial sediments during high flow. All metal concentrations appear to be below primary and secondary maximum contaminant levels (MCL\u27s) in both the lagoons and the stream water. The only metals for which the MCL was exceeded at the site are iron and manganese; concentrations were relatively high in the shallow ground-water monitoring wells. Concentrations of these metals are commonly elevated in ground water derived from shallow, alluvial sediments in this physiographic region, however. These data suggest that the lagoons are having a minimal impact, if any, on the quality of ground water around the lagoons. The results from a one-time sampling for bacteria indicate that the total coliform in the monitoring wells ranged from 10 to 1,920 colonies per 100 ml (col/100 ml). Analysis for E. coli bacteria showed that only one well, BT30, contained measurable counts (10 col/100 ml). The presence of E. coli in this well is inconsistent with other parameters that would indicate contamination from the lagoons, however; their presence may represent contamination during sampling. The data from this investigation, as well as previous studies, indicate that the lagoons provide efficient primary water treatment without causing significant ground-water contamination. Moreover, the design and engineering used for the Bardstown plant may provide a model for cost-effective, efficient primary water-treatment systems capable of long-term operation without affecting the local ground-water system. Lagoons in other physiographic and geologic settings should be studied to determine the effect of large lagoons throughout the state. This is especially pertinent now, because public and regulatory agencies have expressed great interest in lagoon technology for managing wastes from large-scale livestock operations

    Using Remote Sensing and Inclined Drilling to Locate High-Yield Water Wells in the Eastern Kentucky Coal Field

    Get PDF
    The Kentucky Geological Survey has developed a method using lineament analysis in conjunction with inclinced exploration boreholes to identify subsurface fractures in the Eastern Kentucky Coal Field. Wells are then drilled to intersect these fractures, with the hope that the wells will be high yielding (greater than 30 gal/min). Lineaments were selected from Landsat TM imagery, side-looking airborne radar (SLAR) imagery, and two enhanced Landsat TM images for over 6,400 square miles of eastern Kentucky. Lineaments were replotted on 7.5-minute topographic quadrangle maps, and field reconnaissance identified locations where lineaments correlated with straight-line topographic features and fracture zones. Subsquent application of an inclined drilling technique at six sites has resulted in four production wells with yields ranging from 47 to 72 gal/min. All production wells intersected fractured rock. According to data from the Kentucky Groundwater Data Repository through October 2002, the yields of these four production wells are greater than the yields of 95 percent of the wells drilled in the Eastern Kentucky Coal Field. This study suggests that to minimize the chances of encountering salty groundwater, the best sites for high-yield wells are in first- or second-order stream valleys with fracture zones

    An Optoelectronic Adaptive Resonance Unit

    Get PDF
    The authors demonstrate a hardware implementation of the adaptive resonance theory ART 1 neural network architecture. The optoelectronic ART1 unit, is a novel application of an old device. This device-the 4-f or Van der Lugt correlator-has historically been used as a fast pattern classifier. Usually the correlation operation is employed as a matched filter, so that a maximum correlation peak corresponds to a well-matched pattern. The device described also uses the large peaks, but takes specific advantage of the fact that a zero-shift correlation is mathematically equivalent to a two-dimensional inner product. The authors describe a promising method for emulating an ART1 unit in optics. They review ART1 from an algorithmic point of view, which shows that inner products are a critical part of ART1. They then discuss its implementation, and show some experimental results. The device works by performing the most computationally intensive parts of the algorithm in optical hardware, and thus offers a suitable marriage of the strengths of electronics and optics

    An Optoelectronic Implementation of the Adaptive Resonance Neural Network

    Get PDF
    A solution to the problem of implementation of the adaptive resonance theory (ART) of neural networks that uses an optical correlator which allows the large body of correlator research to be leveraged in the implementation of ART is presented. The implementation takes advantage of the fact that one ART-based architecture, known as ART1, can be broken into several parts, some of which are better to implement in parallel. The control structure of ART, often regarded as its most complex part, is actually not very time consuming and can be done in electronics. The bottom-up and top-down gated pathways, however, are very time consuming to simulate and are difficult to implement directly in electronics due to the high number of interconnections. In addition to the design, the authors present experiments with a laboratory prototype to illustrate its feasibility and to discuss implementation details that arise in practice. This device can potentially outperform alternative implementations of ART1 by as much as two to three orders of magnitude in problems requiring especially large input field

    Hydrogeology, Hydrogeochemistry, and Spoil Settlement at a Large Mine-Spoil Area in Eastern Kentucky: Star Fire Tract

    Get PDF
    An applied research program at the Star Fire surface mine in eastern Kentucky, owned and operated by Cypress-AMAX Coal Co., defined spoil characteristics to develop and monitor water resources, which will help identify a reliable water supply for future property development. Water stored in the mine spoil may provide a usable ground-water supply, and the spoil could also be engineered to provide base flow to surfacewater reservoirs. Ground-water recharge enters the spoil by way of sinking streams, ground-water flow from bedrock in contact with the mine spoil, and a specially designed infiltration basin. Ground water discharges predominantly from springs and seeps along the northwestern outslope of the spoil. A conceptual model of ground-water flow, based on data from monitoring wells, discharge from springs and ponds, dye tracing, hydraulic gradients, and field reconnaissance, indicates that ground water moves slowly in the spoil interior, where it must flow down into the valley fills before discharging out of the spoil. Two saturated zones have been established: the first in the spoil interior, and the second in the valley fills that surround the main spoil body at lower elevations. The saturated zone in the valley fills contains fresher water than the zone in the spoil interior and exhibits more water-level fluctuation because of efficient recharge pathways along the spoil’s periphery at the spoil-highwall contact. The average saturated thickness of the valley fill areas (30.1 ft) is approximately twice the average saturated thickness found in the spoil’s interior (15.4 ft). Spatial water-quality variations are consistent with those predicted in the proposed flow system. Based on an estimated average saturated thickness of 21 ft for the entire site, the saturated spoil stores 4,200 acre-ft (1.4 billion gallons) of water. Hydraulic-conductivity (K) values derived from slug tests range from 2.0 × 10-6 to more than 2.9 × 10-5 ft/sec, and are consistent with hydraulic-conductivity data for other spoil areas where similar mining methods are used. Water samples taken from wells and springs indicate that the ground water is a calcium-magnesium-sulfate type, differing mainly in the total concentration of these constituents at various locations. Mineral saturation indices calculated using the geochemical model PHREEQE indicate that most of the ground water is near equilibrium with gypsum. Nearly all the water samples had pH measurements in a favorable range between 6.0 and 7.0, indicating that the spoil does not produce highly acidic water. Measurements of vertical displacement around the monitoring-well surface casings indicate that differential settlement is occurring within the mine spoil. The most rapid settlement occurs in the most recently placed spoil near the active mining pit

    A Neural Architecture for Unsupervised Learning with Shift, Scale and Rotation Invariance, Efficient Software Simulation Heuristics, and Optoelectronic Implementation

    Get PDF
    A simple modification of the adaptive resonance theory (ART) neural network allows shift, scale and rotation invariant learning. The authors point out that this can be accomplished as a neural architecture by modifying the standard ART with hardwired interconnects that perform a Fourier-Mellin transform, and show how to modify the heuristics for efficient simulation of ART architectures to accomplish the additional innovation. Finally, they discuss the implementation of this in optoelectronic hardware, using a modification of the Van der Lugt optical correlato

    Ground Water in the Kentucky River Basin

    Get PDF
    Most private wells in the Kentucky River Basin are in unconfined or semi-confined bedrock aquifers. Within these aquifers, high-yield zones are irregularly distributed. The most productive wells are drilled into fractured bedrock and alluvium along the Kentucky River floodplain. The data indicate that ground water acts as a buffer to peak and low flows in Kentucky River Basin streams. At current withdrawal rates, ground-water usage does not seem to have an adverse impact on the Kentucky River. Privately owned ground-water sources supply approximately 135,000 people living in the basin-approximately 19 percent of the total population and 36 percent of the rural population. More than 50 percent of residential water supplies in eastern Kentucky rely on ground water. If aquifers are protected from pollution by wellhead protection programs and old wells are retrofitted to prevent direct contamination, then ground water will continue to provide a reliable water supply in many rural areas of the basin. However, for most of the basin, few wells will have yields adequate to supply a large demand. Ground water from present wells will not provide an adequate supply for communities with a population of over a few thousand. Limited discharge data available for springs and large wells in the basin strongly suggest that the potential for ground water to supplement current supplies should not be ignored. Discharge from well fields and springs could be used to augment surface supplies during drought. A better understanding of the distribution and quality of ground-water resources is crucial for the citizens of the basin to fully benefit from ground water

    Search for CP Violation in the Decay Z -> b (b bar) g

    Full text link
    About three million hadronic decays of the Z collected by ALEPH in the years 1991-1994 are used to search for anomalous CP violation beyond the Standard Model in the decay Z -> b \bar{b} g. The study is performed by analyzing angular correlations between the two quarks and the gluon in three-jet events and by measuring the differential two-jet rate. No signal of CP violation is found. For the combinations of anomalous CP violating couplings, h^b=h^AbgVb−h^VbgAb{\hat{h}}_b = {\hat{h}}_{Ab}g_{Vb}-{\hat{h}}_{Vb}g_{Ab} and hb∗=h^Vb2+h^Ab2h^{\ast}_b = \sqrt{\hat{h}_{Vb}^{2}+\hat{h}_{Ab}^{2}}, limits of \hat{h}_b < 0.59and and h^{\ast}_{b} < 3.02$ are given at 95\% CL.Comment: 8 pages, 1 postscript figure, uses here.sty, epsfig.st
    • …
    corecore