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A neural architecture for unsupervised learning with shift, scale and 
rotation invariance, efficient software simulation heuristics, and 

optoelectronic implementation 

Donald C. Wunsch 11, David S. Newman, Thomas P. Caudell, David Capps, and 
R. Aaron Falk 

The Boeing Company, P.O. Box 24346, Seattle, WA 98 124-0346 

Abstract 

A simple modification of the adaptive 
resonance theory (ART) neural network allows shift, 
scale and rotation invariant learning. We point out that 
this can be accomplished as a neural architecture by 
modifying the standard ART with hardwired 
interconnects that perform a Fourier-Mellin transform, 
and show how to modify the heuristics for efficient 
simulation of ART architectures to accomplish the 
additional innovation. Finally, we discuss the 
implementation of this in optoelectronic hardware, 
using a modification of the Van der Lugt optical 
correlator. 

Introduction 

The insights presented in this paper come 
from three sources: the study of adaptive resonance 
theory (ART)1-4, the desire to simulate it efficiently in 
software and the pursuit of optoelectronic 
implementation. Adaptive resonance theory provides a 
neural network design to perform unsupervised 
Icarning. The binary-input version of this design2 is 
rcferred to as ART1, and we will henceforth assume 
that we are referring to ARTl in all our discussions. 
ARTl has been shown to be a type of varying-k- 
means-clustering algorithm5 in that it allows patterns 
to be grouped according to a goodness-of-fit criterion 
rather than forcing patterns to fit into a preassigned 
number of categories. The comparison with clustering 
has led to some efficient algorithms for simplified 
software s i m ~ l a t i o n ~ 7 ~  which we and others have used 
in previous work.839 Furthermore, we have adapted a 
classical optical processing technique, called Van der 
Lugt optical correlationlO>l to provide an efficient 
hardware i m p l e m e n t a t i ~ n . ~ ~ ? ~ ~  Now we describe how 
to augment the system with a Fourier-Mellin 
t r a n ~ f o r m ~ ~ > ~ ~  so as to provide the desired invariances. 
The combination of ART and the Fourier-Mellin 
transform has been reported previously. Our main 
contribution is to point out that this can be efficiently 

incorporated into the hardware implementation, since 
the hardware we are using is particularly amenable to 
this technique13. 

Unsupervised learning with ART 

Adaptive resonance is a very well-known 
neural network theory.14 The reason for its fame in 
the neural network community is that it uses very 
simple elements to perform learning without a teacher. 
In other words, there is no training signal presented 
along with each input pattern that allows the nctwork 
to learn a proper output. The network must learn the 
proper response without assistance. However, this is 
not the only useful feature of ART architectures. They 
also have the property that they regulate their own 
learning. There is no signal needed to tell an ART 
network to switch from a “learning mode” to a 
“performance mode”. Finally, the network is stable, 
yet always ready to learn something new. It can learn a 
set of patterns, then get dealt some novel patterns, deal 
with those in an appropriate manner, and yet retain a 
reasonable categorization of the old memories, No 
other neural net theory can boast all of thcsc 
capabilities, 

How does an Adaptive Resonance Unit do 
all this? The key is that the pattern classification takes 
place in a feedback loop, and that learning does not 
appreciably set in until resonance occurs. If resonance 
does not occur, there is a mechanism called reset that 
allows a search for a better pattern match, removes all 
previously considered classifications, and suspends 
learning until the right answer is found. This is 
clarified by examining figure 1. 

In figure 1 we see the ART unit displayed 
in several separate layers. These are: R, the 
recognition layer; C ,  the comparison layer; I, the 
input layer; V, the vigilance layer; and Re, the reset 
layer. This grouping of layers is taken from a papel by 
Ryan et. and while i t  does not follow Carpenter 
and Grossberg’s description exactly, it is topologically 
and functionally equivalent. Going left-to-right we see 
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the ART unit in action. First the input is merely 
registered at the comparison layer and fed up to the 
recognition layer (la.) In the second frame, we see that 
the recognition layer has a winner-take-all property, so 
that the node corresponding to the best match wins and 
is the initial best guess (lb.) This guess is not taken 
as the final word, though, as we see at the bottom left. 
It is instead tested by playing back the previously 
learned template associated with the winning node onto 
the comparison layer. This is compared with the 
pattern still on the input layer by competing signals 

sent to the vigilance layer (IC.) In the final frame we 
see an example of what happens when the match is not 
good enough. The vigilance layer is now able to 
activate the reset layer. The reset layer has the property 
that it only suppresses nodes at the output that have 
been recently active, and has no effect on the rest (Id.) 
In this case, only the prior winner has been affected. 
Now with that node removed, the network will 
reclassify the pattern and continue to do so until it has 
found a good match. 
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Figure 1. The learning cycles of an  ART unit. 
normalizing factor. This procedure is specified more 
rigorously below. 

The decisions that the unit uerforms at the 
various points in this cycle have a simple 
mathematical characterization (in contrast with the 
dynamical equations for the system, which are highly 
coupled and nonlinear.) There are fortunately many 
theorems about the system, and some of them show 
some simple decision rules for various parts of the 
system.* For example, the recognition layer simply 
chooses the node that has the greatest normalized inner 
product between the input pattern and the template 
pattern. Similarly, the vigilance check is determined 
by taking the same inner product, with a different 

Consider a new n-element input vector to 
be called P. (All patterns are referred to as vectors here, 
even though they will be two-dimensional patterns in 
most experiments, and could easily take on three or 
more dimensions. It does not change any of the 
following analysis to simply consider the patterns as 
vectors.) Now consider how each of these vectors will 
be classified. We wish to assign the vector to a 
category, say category 1, category 2, etc. Each 
category will have some template, or prototype vector, 
associated with it. These have also been referred to as 
library elements in the literature. They are the patterns 
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that the unit "knows". The unit will compare the 
input to these patterns to decide how to classify it. We 
will index these patterns and refer to them as the Ti, 
where i is the index number. The parameter p is the 

vigilance threshold of the ART unit, and p is a small 
bias. With these definitions in mind, the full ARTl 
algorithm is given in the flowchart below.l* 

m p I  
T;,," p ' 

Figure 2. A R T l  flowchart 

The Fourier-Mellin transform 

In 1964, a powerful technique in optical 
computing was introduced. It allowed the all-optical 
recognition of a pattern, even in the presence of 
considerable noise. This technique is known as Vander 
Lugt correlation. Despite its power, it still has not 
made the optical pattern recognizer an off-the-shelf 
device. One reason for this is that the device has the 
following problem: a small shift, rotation, or change 
in scale results in a large degradation of the system's 
performance. An illustration of the latter two 
problems (which can be regarded as the more serious 
ones) is shown in figure 3 (adapted from Casasent 
and Psaltis.14> 15) From this figure we see the 
marked decrease in signal-to-noise-ratio (SNR) for a 
few degrees rotation or a few percent scale change. 

A promising solution to this problem was 
proposed by Casasent and P~a1t is . l~ .  l5 This method 
uses optical transformations which provide invariance 
to position, rotation, and scale changes. The first 
step in this procedure is to form the magnitude of the 
Fourier transforms of the input object (to be 
recognized) and of the "ideal" object (to be stored as a 

SNR i n  dB 
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SNR i n  dB 
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template.) This step can be realized by a Fourier 
transform lens. The next step is to convert these. 
functions to polar coordinates (i.e. FI(r,O) and F2(r,O).) 
Then these functions are scaled logrithmically in r. 
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These steps (which are really combined into only one 
step) can be performed by computer generated 
holograms or spatial light modulators. The final step 
is to perform the Fourier transform of the scaled 
functions. The combination of log-polar scaling and 
Fourier transform is equivalent to a Mellin transform. 
With the Fourier transform at the front, the entire 
process is referred to as a Fourier-Mellin transform and 
the output patterns are invariant to position, scale and 
rotation changes of the input patterns. 

The neural architecture 

The design of a hardwired neural network to 
perform a discrete Fourier transform (DFT) is a 
straightforward exercise, since a DFT is simply an 
appropriate summation of weighted inputs. 
Furthermore, a Mellin transform can also be designed 
as a hardwired remapping of  pattern^.^^,^^ Therefore, 
the Fourier-Mellin transform can be accomplished as a 
series of hardwired neural networks. The entire neural 
net architecture for position, scale, and rotation 
invariant unsupervised learning can therefore be 
considered as a linking of neural net components. 

Efficient software simulation 

The ARTl algorithm shown in the flowchart 
(figure 1) is based directly on the theorems in Carpenter 

P2 Template 
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!! 
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and Grossberg2. It has been verified by CarpenterIS, 
and the Boeing simulation code implementation has 
been tested against the published examples in2,  
yielding identical results. 

The software investigations of ARTl 
performance on a variety of data which are aimed at 
delineating the tasks it performs most effectively will 
also provide a database for testing hardware 
performance. One database which is currently under 
investigation is generated to satisfy the necessary and 
sufficient conditions for perfect ARTl learning of the 
theorem proved in Ncwman and Caudell17. It consists 
of a series of hierarchically clustered classes of patterns 
which will be learned perfectly on the first pass 
through the data. The classification becomes finer and 
finer as the data is presented to ARTl units of 
increasing vigilance level. The alphabet example2 is 
also investigated in greater detail using the statistical 
techniques suggested in Newman and Caudell17. 

Hardware implementation 

The basic configuration of the electro-optical 
ART unit is a type of Van der Lugt correlator5, given 

P1 Input Plane 

camera 
c7 

Figure 4. The basic system. 
binary phase-only filter, and contains the two- 
dimensional Fourier transform of the input pattern. 
Plane P2 is the template plane. This is also a spatial 

in figure 4. Plane P1, in the center, is the input 
plane. A spatial light modulator is configured as a 
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light modulator, but it is an amplitude modulator. It 
contains multiple templates simultaneously. The 
lenses are chosen such that the paraxial approximation 
applies, and the plane P1 will receive the Fourier 
transforms of each template, with the zero frequency 
spot in approximately the same location. 

The output plane is P3, where we have a 
charge-coupled-device (CCD) camera. This plane will 
have correlation peaks corresponding to templates that 
closely match the input image, as shown in figure 5. 
It is possible to sample this plane so that sample 
points will correspond to the value of Ip * tl, where p 
is the pattern and t is the template, both expressed as 
one-dimensional vectors. This is a key part of what 

P2 Template 
P1 a ne I 

A 
I 1  

I I  
I I  
I I  

an adaptive resonance unit calculates, as we saw in the 
flowchart of figure 1. Other key information needed is 
Ip pl and It tl. These can easily be calculated, 
either optically or electronically. For example, the 
Ip * pl term can be calculated by including a copy of p 
on the template plane, and measuring its corresponding 
output at the camera. The It * tl term is not 
recalculated as frequently and may be easier to do 
electronically, although it could be easily be done 
optically with this system by time-multiplexing the 
calculations. Also, the output is calibrated 
electronically to compensate for image degradation due 
to intensity variations across the template field. 

P 1  I n p u t  Plane 

L 
I 1  

i i  
I I  
I I  
I1  
I I  
V 

P3 

lii 
Figure 5. Multiple matched filter correlations. 

This is a proven experimental setup for 
performing other kinds of optical computing 
 operation^.^>^>* All electronic calculations, and 
control of the spatial light modulators, is done by a 
DEC microvax. The unit is also used to process the 
CCD camera output via a frame grabber. The control 
code is written in FORTRAN and also calls some 
special control macros for the spatial light modulators. 
A photograph of the experimental setup is shown in 
figure 6. 

This system is especially attractive for the 
problem at hand: shift, scale, and rotation-invariant 
correlation. The reason for this is that we are already 
using a correlator that forms the backbone of a 
generalized optical transform system, that is easily 

output 

t 

capable of performing the Fourier-Mellin transform as 
described by Casasent and P ~ a l t i s l ~ , ~ ~ .  Modification 
of the correlator can take the form of inserting a 
steering phase element in the Fourier plane. However, 
it can be implemented even more simply. The spatial 
light modulator that is already in that position can 
simultaneously act as a steering phase element and 
input element when programmed correctly. Techniques 
for calculating the generalized phase element for a 
desired optical transform are given by Saleh and 
Freeman20. 

It is appropriate to caution the reader that the 
shift invariance provided by this device is limited to 
small shifts. This is because a shift in  the input 
causes a corresponding shift in the output correlation 
peak. This is normally of no consequence, since the 
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maximum peak can be noted wherever it occurs. 
However, when the correlator is configured to process 
multiple patterns simultaneously, as in this device, the 
shifts must be small enough that the correlation peak 
does not move into a region associated with a 

neighboring library element. The rotation and scale 
invariant properties are not limited by this property-- 
only the shift invariance is affected. 

Figure 6 .  The experimental apparatus. 

Conclus ions  

We have described a system that is capable of 
position, scale, and rotation invariant unsupervised 
learning. This is accomplished by coupling an 
adaptive resonance unit with a Fourier-Mellin 
transform. Furthermore, we show how this can be 
described as a completely neural system, and discuss 
simulation and hardware implementation issues. 
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