204 research outputs found

    Immuno-PET of epithelial ovarian cancer: Harnessing the potential of CA125 for non-invasive imaging

    Get PDF
    BACKGROUND: Epithelial ovarian cancer (EOC) is characterized by the overexpression of cancer antigen 125 (CA125), a mucinous glycoprotein that serves as a tumor biomarker. Early diagnosis of EOC is plagued by its asymptomatic nature of progression and the limitations of currently used immunoassay techniques that detect CA125 as a shed antigen in serum samples. Presently, there is no technique available for the in vivo evaluation of CA125 expression in malignant tissues. Moreover, there could be an unexplored pathophysiological time window for the detection of CA125 in EOC, during which it is expressed on tumor cells prior to being shed into the bloodstream. A method for the in vivo evaluation of CA125 expression on ovarian neoplasms earlier along disease progression and/or recurrence can potentially contribute to better disease management. To this end, the present work utilizes an anti-CA125 monoclonal antibody (MAb) and a single-chain variable fragment (scFv) labeled with the positron-emitting radionuclide (64)Cu for preclinical molecular imaging of CA125 expression in vivo. METHODS: Anti-CA125 MAb and scFv were prepared and functionally characterized for target binding prior to being tested as radiotracers in a preclinical setting. RESULTS: Immunoblotting, immunofluorescence, and flow cytometry revealed specific binding of CA125-targeting vectors to NIH:OVCAR-3 cells and no binding to antigen-negative SKOV3 cells. (64)Cu-labeled anti-CA125 MAb and scFv were obtained in specific activities of 296 and 122 MBq/mg, respectively. Both radioimmunoconjugate vectors demonstrated highly selective binding to NIH:OVCAR-3 cells and virtually no binding to SKOV3 cells. In vivo radiopharmacological evaluation using xenograft mouse models injected with (64)Cu-labeled anti-CA125 MAb provided a standardized uptake value (SUV) of 5.76 (29.70 %ID/g) in OVCAR3 tumors 24 h post-injection (p.i.) versus 1.80 (5.91 %ID/g) in SKOV3 tumors. (64)Cu-labeled anti-CA125 scFv provided an SUV of 0.64 (3.21 %ID/g) in OVCAR3 tumors 24 h p.i. versus 0.25 (1.49 %ID/g) in SKOV3 tumors. Results from small-animal PET imaging were confirmed by ex vivo autoradiography and immunohistochemistry. CONCLUSIONS: Radiolabeling of anti-CA125 MAb and scFv with (64)Cu did not compromise their immunoreactivity. Both radioimmunoconjugates presented specific tumor uptake and expected biological clearance profiles. This renders them as potential immuno-PET probes for targeted in vivo molecular imaging of CA125 in EOC. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s13550-014-0060-4) contains supplementary material, which is available to authorized users

    Identify. Quantify. Predict. Why immunologists should widely use molecular imaging for Coronavirus Disease 2019

    Get PDF
    Molecular imaging using PET/CT or PET/MRI has evolved from an experimental imaging modality at its inception in 1972 to an integral component of diagnostic procedures in oncology, and, to lesser extent, in cardiology and neurology, by successfully offerin

    Good practices for 68Ga radiopharmaceutical production

    Get PDF
    Background: The radiometal gallium-68 (Ga-68) is increasingly used in diagnostic positron emission tomography (PET), with Ga-68-labeled radiopharmaceuticals developed as potential higher-resolution imaging alternatives to traditional Tc-99m agents. In precision medicine, PET applications of Ga-68 are widespread, with Ga-68 radiolabeled to a variety of radiotracers that evaluate perfusion and organ function, and target specific biomarkers found on tumor lesions such as prostate-specific membrane antigen, somatostatin, fibroblast activation protein, bombesin, and melanocortin. Main body: These Ga-68 radiopharmaceuticals include agents such as [Ga-68]Ga-macroaggregated albumin for myocardial perfusion evaluation, [Ga-68]Ga-PLED for assessing renal function, [Ga-68]Ga-t-butyl-HBED for assessing liver function, and [Ga-68]Ga-PSMA for tumor imaging. The short half-life, favourable nuclear decay properties, ease of radiolabeling, and convenient availability through germanium-68 (Ge-68) generators and cyclotron production routes strongly positions Ga-68 for continued growth in clinical deployment. This progress motivates the development of a set of common guidelines and standards for the Ga-68 radiopharmaceutical community, and recommendations for centers interested in establishing Ga-68 radiopharmaceutical production. Conclusion: This review outlines important aspects of Ga-68 radiopharmacy, including Ga-68 production routes using a Ge-68/Ga-68 generator or medical cyclotron, standardized Ga-68 radiolabeling methods, quality control procedures for clinical Ga-68 radiopharmaceuticals, and suggested best practices for centers with established or upcoming Ga-68 radiopharmaceutical production. Finally, an outlook on Ga-68 radiopharmaceuticals is presented to highlight potential challenges and opportunities facing the community

    Cell Cycle Regulating Kinase Cdk4 as a Potential Target for Tumor Cell Treatment and Tumor Imaging

    Get PDF
    The cyclin-dependent kinase (Cdk)-cyclin D/retinoblastoma (pRb)/E2F cascade, which controls the G1/S transition of cell cycle, has been found to be altered in many neoplasias. Inhibition of this pathway by using, for example, selective Cdk4 inhibitors has been suggested to be a promising approach for cancer therapy. We hypothesized that appropriately radiolabeled Cdk4 inhibitors are suitable probes for tumor imaging and may be helpful studying cell proliferation processes in vivo by positron emission tomography. Herein, we report the synthesis and biological, biochemical, and radiopharmacological characterizations of two 124I-labeled small molecule Cdk4 inhibitors (8-cyclopentyl-6-iodo-5-methyl-2-(4-piperazin-1-yl-phenylamino)-8H-pyrido[2,3-d]-pyrimidin-7-one (CKIA) and 8-cyclopentyl-6-iodo-5-methyl-2-(5-(piperazin-1-yl)-pyridin-2-yl-amino)-8H-pyrido[2,3-d]pyrimidin-7-one (CKIB)). Our data demonstrate a defined and specific inhibition of tumor cell proliferation through CKIA and CKIB by inhibition of the Cdk4/pRb/E2F pathway emphasizing potential therapeutic benefit of CKIA and CKIB. Furthermore, radiopharmacological properties of [124I]CKIA and [124I]CKIB observed in human tumor cells are promising prerequisites for in vivo biodistribution and imaging studies

    Synthesis, complex stability and small animal PET imaging of a novel 64Cu-labelled cryptand molecule

    Get PDF
    The radiosynthesis and radiopharmacological evaluation including small animal PET imaging of a novel 64Cu-labelled cryptand molecule ([64Cu]CryptTM) possessing a tris-pyridyl/tris-amido set of donor atoms is described

    Complete tooth loss as status passage

    Get PDF
    The aim of this paper is to add to the literature on the sociology of oral health and dentistry by presenting the relevance of status passage to the study of complete tooth loss. The paper reports on an analysis of data taken from participants residing in the Nelson region of New Zealand. In total the data include interviews from 20 participants, all of whom had their remaining natural teeth removed prior to 1960. In total, 12 women and eight men were interviewed. All were from a European background with an age range of 71 to 101. Participants were interviewed, following a narrative approach, on the nature of the social factors that resulted in complete tooth loss by starting with their family history and then focusing on the factors and events leading up to their total tooth loss. Data were analysed through the methods and techniques of grounded theory. This paper provides an outline of the importance of scheduling, prescribing, social factors, ‘compound awareness contexts’ and reversibility to the status passage into complete tooth loss. We conclude by arguing that the theory of status passage may enable a detailed analysis of the time ‘space extensionality’ of trajectories into complete tooth loss

    The cortisol awakening response predicts same morning executive function: results from a 50-day case study

    Get PDF
    A relationship between individual differences in trait estimates of the cortisol-awakening response (CAR) and indices of executive function (EF) has been reported. However, it is difficult to determine causality from such studies. The aim of the present study was to capitalise upon state variation in both variables to seek stronger support for causality by examining daily co-variation. A 50 days researcher–participant case study was employed, ensuring careful adherence to the sampling protocol. A 24-year-old healthy male collected saliva samples and completed an attention-switching index of EF on the morning of each study day. Subsidiary control measures included wake time, sleep duration, morning fatigue, and amount of prior day exercise and alcohol consumption. As the CAR preceded daily measurement of EF, we hypothesised that, over time, a greater than average CAR would predict better than average EF. This was confirmed by mixed regression modelling of variation in cortisol concentrations, which indicated that the greater the increase in cortisol concentrations from 0 to 30 min post-awakening (CAR) the better was subsequent EF performance at 45 min post-awakening (t = 2.29, p = 0.024). This effect was independent of all potential confounding measures. Results are discussed in terms of implications for the understanding of the relationship between the CAR and the cognitive function, and the previously suggested role of the CAR in “boosting” an individual’s performance for the day ahead

    Gene network analysis of Arabidopsis thaliana flower development through dynamic gene perturbations

    Get PDF
    Understanding how flowers develop from undifferentiated stem cells has occupied developmental biologists for decades. Key to unraveling this process is a detailed knowledge of the global regulatory hierarchies that control developmental transitions, cell differentiation and organ growth. These hierarchies may be deduced from gene perturbation experiments, which determine the effects on gene expression after specific disruption of a regulatory gene. Here, we tested experimental strategies for gene perturbation experiments during Arabidopsis thaliana flower development. We used artificial miRNAs (amiRNAs) to disrupt the functions of key floral regulators, and expressed them under the control of various inducible promoter systems that are widely used in the plant research community. To be able to perform genome‐wide experiments with stage‐specific resolution using the various inducible promoter systems for gene perturbation experiments, we also generated a series of floral induction systems that allow collection of hundreds of synchronized floral buds from a single plant. Based on our results, we propose strategies for performing dynamic gene perturbation experiments in flowers, and outline how they may be combined with versions of the floral induction system to dissect the gene regulatory network underlying flower development

    Molecular basis for the specification of floral organs by APETALA3 and PISTILLATA

    Get PDF
    How different organs are formed from small sets of undifferentiated precursor cells is a key question in developmental biology. To understand the molecular mechanisms underlying organ specification in plants, we studied the function of the homeotic selector genes APETALA3 (AP3) and PISTILLATA (PI), which control the formation of petals and stamens during Arabidopsis flower development. To this end, we characterized the activities of the transcription factors that AP3 and PI encode throughout flower development by using perturbation assays as well as transcript profiling and genomewide localization studies, in combination with a floral induction system that allows a stage-specific analysis of flower development by genomic technologies. We discovered considerable spatial and temporal differences in the requirement for AP3/PI activity during flower formation and show that they control different sets of genes at distinct phases of flower development. The genomewide identification of target genes revealed that AP3/PI act as bifunctional transcription factors: they activate genes involved in the control of numerous developmental processes required for organogenesis and repress key regulators of carpel formation. Our results imply considerable changes in the composition and topology of the gene network controlled by AP3/PI during the course of flower development. We discuss our results in light of a model for the mechanism underlying sex-determination in seed plants, in which AP3/PI orthologues might act as a switch between the activation of male and the repression of female development
    corecore