64 research outputs found

    Autophagy and ATP-induced anti-apoptosis in antigen presenting cells (APC) follows the cytokine storm in patients after major trauma

    Get PDF
    Severe trauma and the systemic inflammatory response syndrome (SIRS) occur as a result of a cytokine storm which is in part due to ATP released from damaged tissue. This pathology also leads to increased numbers of immature antigen presenting cells (APC) sharing properties of dendritic cells (DC) or macrophages (MĪ¦). The occurrence of immature APC appears to coincide with the reactivation of herpes virus infections such as Epstein Barr virus (EBV). The aim of this study was the comparative analysis of the ultrastructural and functional characteristics of such immature APC. In addition, we investigated EBV infection/ reactivation and whether immature APC might be targets for natural killers (NK). Significant macroautophagy, mitochondrial degradation and multivesicular body formation together with the identification of herpes virus particles were morphological findings associated with immature APC. Exogenous stressors such as ATP further increased morphological signs of autophagy, including LC3 expression. Functional tests using fluorescent bacteria proved impaired phagolysosome fusion. However, immature APC were susceptible to NK-92-mediated cytolysis. We found evidence for EBV latency state II infection by detecting EBV-specific LMP1 and EBNA2 in immature APC and in whole blood of these patients. In summary, trauma-induced cytokine storms may induce maturation arrest of APC, promote ATP-induced autophagy, support EBV persistence and impair the degradation of phagocytozed bacteria through inefficient phagolysosome fusion. The susceptibility to NK-mediated cytolysis supports the hypothesis that NK function is likely to contribute to immune reconstitution after major trauma by regulating immature APC, and ATP-induced autophagy and survival

    Plasmalogen enrichment in exosomes secreted by a nematode parasite versus those derived from its mouse host: implications for exosome stability and biology

    Get PDF
    Extracellular vesicles (EVs) mediate communication between cells and organisms across all 3 kingdoms of life. Several reports have demonstrated that EVs can transfer molecules between phylogenetically diverse species and can be used by parasites to alter the properties of the host environment. Whilst the concept of vesicle secretion and uptake is broad reaching, the molecular composition of these complexes is expected to be diverse based on the physiology and environmental niche of different organisms. Exosomes are one class of EVs originally defined based on their endocytic origin, as these derive from multivesicular bodies that then fuse with the plasma membrane releasing them into the extracellular environment. The term exosome has also been used to describe any small EVs recovered by high-speed ultracentrifugation, irrespective of origin since this is not always well characterized. Here, we use comparative global lipidomic analysis to examine the composition of EVs, which we term exosomes, that are secreted by the gastrointestinal nematode, Heligmosomoides polygyrus, in relation to exosomes secreted by cells of its murine host. Ultra-performance liquid chromatography ā€“ tandem mass spectrometry (UPLC-MS/MS) analysis reveals a 9- to 62-fold enrichment of plasmalogens, as well as other classes of ether glycerophospholipids, along with a relative lack of cholesterol and sphingomyelin (SM) in the nematode exosomes compared with those secreted by murine cells. Biophysical analyses of the membrane dynamics of these exosomes demonstrate increased rigidity in those from the nematode, and parallel studies with synthetic vesicles support a role of plasmalogens in stabilizing the membrane structure. These results suggest that nematodes can maintain exosome membrane structure and integrity through increased plasmalogens, compensating for diminished levels of other lipids, including cholesterol and SM. This work also illuminates the prevalence of plasmalogens in some EVs, which has not been widely reported and could have implications for the biochemical or immunomodulatory properties of EVs. Further comparative analyses such as those described here will shed light on diversity in the molecular properties of EVs that enable them to function in cross-species communication

    Cellular Proteins in Influenza Virus Particles

    Get PDF
    Virions are thought to contain all the essential proteins that govern virus egress from the host cell and initiation of replication in the target cell. It has been known for some time that influenza virions contain nine viral proteins; however, analyses of other enveloped viruses have revealed that proteins from the host cell can also be detected in virions. To address whether the same is true for influenza virus, we used two complementary mass spectrometry approaches to perform a comprehensive proteomic analysis of purified influenza virus particles. In addition to the aforementioned nine virus-encoded proteins, we detected the presence of 36 host-encoded proteins. These include both cytoplasmic and membrane-bound proteins that can be grouped into several functional categories, such as cytoskeletal proteins, annexins, glycolytic enzymes, and tetraspanins. Interestingly, a significant number of these have also been reported to be present in virions of other virus families. Protease treatment of virions combined with immunoblot analysis was used to verify the presence of the cellular protein and also to determine whether it is located in the core of the influenza virus particle. Immunogold labeling confirmed the presence of membrane-bound host proteins on the influenza virus envelope. The identification of cellular constituents of influenza virions has important implications for understanding the interactions of influenza virus with its host and brings us a step closer to defining the cellular requirements for influenza virus replication. While not all of the host proteins are necessarily incorporated specifically, those that are and are found to have an essential role represent novel targets for antiviral drugs and for attenuation of viruses for vaccine purposes

    HIV and Mature Dendritic Cells: Trojan Exosomes Riding the Trojan Horse?

    Get PDF
    Exosomes are secreted cellular vesicles that can induce specific CD4+ T cell responses in vivo when they interact with competent antigen-presenting cells like mature dendritic cells (mDCs). The Trojan exosome hypothesis proposes that retroviruses can take advantage of the cell-encoded intercellular vesicle traffic and exosome exchange pathway, moving between cells in the absence of fusion events in search of adequate target cells. Here, we discuss recent data supporting this hypothesis, which further explains how DCs can capture and internalize retroviruses like HIV-1 in the absence of fusion events, leading to the productive infection of interacting CD4+ T cells and contributing to viral spread through a mechanism known as trans-infection. We suggest that HIV-1 can exploit an exosome antigen-dissemination pathway intrinsic to mDCs, allowing viral internalization and final trans-infection of CD4+ T cells. In contrast to previous reports that focus on the ability of immature DCs to capture HIV in the mucosa, this review emphasizes the outstanding role that mature DCs could have promoting trans-infection in the lymph node, underscoring a new potential viral dissemination pathway

    dOCRL maintains immune cell quiescence in Drosophila by regulating endosomal traffic

    Get PDF
    Lowe Syndrome is a developmental disorder characterized by eye, kidney, and neurological pathologies, and is caused by mutations in the phosphatidylinositol-5-phosphatase OCRL. OCRL plays diverse roles in endocytic and endolysosomal trafficking, cytokinesis, and ciliogenesis, but it is unclear which of these cellular functions underlie specific patient symptoms. Here, we show that mutation of Drosophila OCRL causes cell-autonomous activation of hemocytes, which are macrophage-like cells of the innate immune system. Among many cell biological defects that we identified in docrl mutant hemocytes, we pinpointed the cause of innate immune cell activation to reduced Rab11-dependent recycling traffic and concomitantly increased Rab7-dependent late endosome traffic. Loss of docrl amplifies multiple immune-relevant signals, including Toll, Jun kinase, and STAT, and leads to Rab11-sensitive mis-sorting and excessive secretion of the Toll ligand SpƄtzle. Thus, docrl regulation of endosomal traffic maintains hemocytes in a poised, but quiescent state, suggesting mechanisms by which endosomal misregulation of signaling may contribute to symptoms of Lowe syndrome

    Membrane vesicles, current state-of-the-art: emerging role of extracellular vesicles

    Get PDF
    Release of membrane vesicles, a process conservedĀ in bothĀ prokaryotes and eukaryotes, represents an evolutionary link, and suggests essential functions of a dynamic extracellular vesicular compartment (including exosomes, microparticles or microvesicles and apoptotic bodies). Compelling evidence supports the significance of this compartment in a broad range of physiological and pathological processes. However, classification of membrane vesicles, protocols of their isolation and detection, molecular details of vesicular release, clearance and biological functions are still under intense investigation. Here, we give a comprehensive overview of extracellular vesicles. After discussing the technical pitfalls and potential artifacts of the rapidly emerging field, we compare results from meta-analyses of published proteomic studies on membrane vesicles. We also summarize clinical implications of membrane vesicles. Lessons from this compartment challenge current paradigms concerning the mechanisms of intercellular communication and immune regulation. Furthermore, its clinical implementation may open new perspectives in translational medicine both in diagnostics and therapy

    l-Selective Amidase with Extremely Broad Substrate Specificity from Ochrobactrum anthropi NCIMB 40321

    No full text
    An industrially attractive l-specific amidase was purified to homogeneity from Ochrobactrum anthropi NCIMB 40321 wild-type cells. The purified amidase displayed maximum initial activity between pH 6 and 8.5 and was fully stable for at least 1 h up to 60Ā°C. The purified enzyme was strongly inhibited by the metal-chelating compounds EDTA and 1,10-phenanthroline. The activity of the EDTA-treated enzyme could be restored by the addition of Zn(2+) (to 80%), Mn(2+) (to 400%), and Mg(2+) (to 560%). Serine and cysteine protease inhibitors did not influence the purified amidase. This enzyme displayed activity toward a broad range of substrates consisting of Ī±-hydrogen- and (bulky) Ī±,Ī±-disubstituted Ī±-amino acid amides, Ī±-hydroxy acid amides, and Ī±-N-hydroxyamino acid amides. In all cases, only the l-enantiomer was hydrolyzed, resulting in E values of more than 150. Simple aliphatic amides, Ī²-amino and Ī²-hydroxy acid amides, and dipeptides were not converted. The gene encoding this l-amidase was cloned via reverse genetics. It encodes a polypeptide of 314 amino acids with a calculated molecular weight of 33,870. Since the native enzyme has a molecular mass of about 66 kDa, it most likely has a homodimeric structure. The deduced amino acid sequence showed homology to a few other stereoselective amidases and the acetamidase/formamidase family of proteins (Pfam FmdA_AmdA). Subcloning of the gene in expression vector pTrc99A enabled efficient heterologous expression in Escherichia coli. Altogether, this amidase has a unique set of properties for application in the fine-chemicals industry

    Endosome-mediated autophagy: An unconventional MIIC-driven autophagic pathway operational in dendritic cells

    No full text
    Activation of TLR signaling has been shown to induce autophagy in antigen-presenting cells (APCs). Using high-resolution microscopy approaches, we show that in LPS-stimulated dendritic cells (DCs), autophagosomes emerge from MHC class II compartments (MIIC s) and harbor both the molecular machinery for antigen processing and the autophagosome markers LC3 and ATG16L1. This ENdosome-Mediated Autophagy (ENMA) appears to be the major type of autophagy in DCs, as similar structures were observed upon established autophagy-inducing conditions (nutrient deprivation, rapamycin) and under basal conditions in the presence of bafilomycin A1. Autophagosome formation was not significantly affected in DCs expressing ATG4BC74A mutant and atg4b-/- bone marrow DCs, but the degradation of the autophagy substrate SQSTM1/p62 was largely impaired. Furthermore, we demonstrate that the previously described DC aggresome-like LPSinduced structures (DALIS) contain vesicular membranes, and in addition to SQSTM1 and ubiquitin, they are positive for LC3. LC3 localization on DALIS is independent of its lipidation. MIIC -driven autophagosomes preferentially engulf the LPS-induced SQSTM1-positive DALIS, which become later degraded in autolysosomes. DALIS-associated membranes also contain ATG16L1, ATG9 and the Q-SNARE VTI1B, suggesting that they may represent (at least in part) a membrane reservoir for autophagosome expansion. We propose that ENMA constitutes an unconventional, APC-specific type of autophagy, which mediates the processing and presentation of cytosolic antigens by MHC class II machinery, and/or the selective clearance of toxic by-products of elevated ROS/RNS production in activated DCs, thereby promoting their survival
    • ā€¦
    corecore