3,341 research outputs found

    Synthesis of Cobalt Nanowires on Porous Anodic Alumina Template Using Electrochemical Deposition

    Get PDF
    Electrochemical deposition has been widely used for synthesis of metal nanowires (NWs) on the porous template. In this paper, the effect of potential and electrolyte concentration on cobalt (Co) NWs formation through porous anodic alumina template has been investigated using direct-current electrodepostion at 0.75~2 V together with the high 0.5 M and low 0.1 M cobalt sulfurate based electrolyte. Scanning electron microscopy and grazing incidence X-ray diffraction were used to examine the nanostructure, morphology and phase of Co NWs. The current vs time curve was recorded for understanding the growth behavior. Too low potential of 0.75 V is not favored for Co NWs formation due to insufficient driving force while too high potential of 2 V ruins the NWs growth owing to hydrogen generation in reduction reaction. The uniform crystalline Co NWs can be obtained by the proper potential of 1V and concentration of 0.5 M at an average growth rate of 964 nm/min

    Hyphoderma moniliforme and H. nemorale (Basidiomycota) newly recorded from China

    Get PDF
    Hyphoderma moniliforme and H. nemorale, saprobically growing on wood, are recorded as new for mycobiota of China. Both species were collected in mountains at the altitudes of 1850‒3000 m, from Yunnan Province (southwestern China). Hyphoderma moniliforme is also a new record for Eurasia, and previously known only from South Africa. The collections of H. nemorale in this study represent the most eastern and the most southern localities for this species known for Eurasia. Both species bear moniliform cystidia. Bayesian inference of phylogeny based on ITS and partial 28S nuclear ribosomal DNA sequences indicated that H. moniliforme is united in one clade with H. litschaueri from North America. 28S-based phylogram demonstrated that Chinese H. nemorale belong to the same clade with the holotype of this species collected from Europe. Morphology descriptions and illustrations for these two species are provided

    Effects of carbohydrate, branched-chain amino acids, and arginine in recovery period on the subsequent performance in wrestlers

    Get PDF
    Many athletes need to participate in multiple events in a single day. The efficient post-exercise glycogen recovery may be critical for the performance in subsequent exercise. This study examined whether post-exercise carbohydrate supplementation could restore the performance in the subsequent simulated wrestling match. The effect of branched-chain amino acids and arginine on glucose disposal and performance was also investigated. Nine well-trained male wrestlers participated in 3 trials in a random order. Each trial contained 3 matches with a 1-hr rest between match 1 and 2, and a 2-hr rest between match 2 and 3. Each match contained 3 exercise periods interspersed with 1-min rests. The subjects alternated 10-s all-out sprints and 20-s rests in each exercise period. At the end of match 2, 3 different supplementations were consumed: 1.2 g/kg glucose (CHO trial), 1 g/kg glucose + 0.1 g/kg Arg + 0.1 g/kg BCAA (CHO+AA trial), or water (placebo trial). The peak and average power in the 3 matches was similar in the 3 trials. After the supplementation, CHO and CHO+AA trial showed significantly higher glucose and insulin, and lower glycerol and non-esterified fatty acid concentrations than the placebo trial. There was no significant difference in these biochemical parameters between the CHO and CHO+AA trials. Supplementation of carbohydrate with or without BCAA and arginine during the post-match period had no effect on the performance in the following simulated match in wrestlers. In addition, BCAA and arginine did not provide additional insulinemic effect

    Medium Effects in rho-Meson Photoproduction

    Get PDF
    We compute dilepton invariant mass spectra from the decays of rho mesons produced by photon reactions off nuclei. Our calculations employ a realistic model for the rho photoproduction amplitude on the nucleon which provides fair agreement with measured cross sections. Medium effects are implemented via an earlier constructed rho propagator based on hadronic many-body theory. At incoming photon energies of 1.5 -3 GeV as used by the CLAS experiment at JLAB, the average density probed for iron targets is estimated at about half saturation density. At the pertinent rho-meson 3-momenta the predicted medium effects on the rho propagator are rather moderate. The resulting dilepton spectra approximately agree with recent CLAS data.Comment: One numerical error corrected, conclusions unchange

    Constructing 3D crystal templates for photonic band gap materials using holographic optical tweezers

    Get PDF
    A simple and robust method is presented for the construction of 3-dimensional crystals from silica and polystyrene microspheres. The crystals are suitable for use as templates in the production of three-dimensional photonic band gap (PBG) materials. Manipulation of the microspheres was achieved using a dynamic holographic assembler (DHA) consisting of computer controlled holographic optical tweezers. Attachment of the microspheres was achieved by adjusting their colloidal interactions during assembly. The method is demonstrated by constructing a variety of 3-dimensional crystals using spheres ranging in size from 3 µm down to 800 nm. A major advantage of the technique is that it may be used to build structures that cannot be made using self-assembly. This is illustrated through the construction of crystals in which line defects have been deliberately included, and by building simple cubic structures

    Generation of functional cardiomyocytes from the synoviocytes of patients with rheumatoid arthritis via induced pluripotent stem cells

    Get PDF
    Cardiovascular disease is a leading cause of morbidity in rheumatoid arthritis (RA) patients. This study aimed to generate and characterise cardiomyocytes from induced pluripotent stem cells (iPSCs) of RA patients. Fibroblast-like synoviocytes (FLSs) from patients with RA and osteoarthritis (OA) were successfully reprogrammed into RA-iPSCs and OA-iPSCs, respectively. The pluripotency of iPSCs was confirmed by quantitative reverse transcription-polymerase chain reaction and immunofluorescence staining. Established iPSCs were differentiated into cardiomyocytes using a small molecule-based monolayer differentiation protocol. Within 12 days of cardiac differentiation from patient-specific and control-iPSCs, spontaneously beating cardiomyocytes (iPSC-CMs) were observed. All iPSC-CMs exhibited a reliable sarcomeric structure stained with antibodies against cardiac markers and similar expression profiles of cardiac-specific genes. Intracellular calcium signalling was recorded to compare calcium-handling properties among cardiomyocytes differentiated from the three groups of iPSCs. RA-iPSC-CMs had a lower amplitude and a shorter duration of calcium transients than the control groups. Peak tangential stress and the maximum contractile rate were also decreased in RA-iPSC-CMs, suggesting that contractility was reduced. This study demonstrates the successful generation of functional cardiomyocytes from pathogenic synovial cells in RA patients through iPSC reprogramming. Research using RA-iPSC-CMs might provide an opportunity to investigate the pathophysiology of cardiac involvement in RA

    Construction and Verification of the Constitutive Model of Pure Copper Deformation at Elevated Temperatures

    Get PDF
    The deformation behavior of pure copper was studied in hot compression tests in the temperature range of 773–1173 K and strain rate interval of 0.001–1.0 s⁻¹, the corresponding flow stress curves were plotted. The new method to calculate critical and saturation stresses was devised, quantitative analysis of strain hardening and dynamic softening was presented, a three-stage constitutive model was constructed to predict the flow stress of pure copper. As predicted and measured flow stress comparison indicate, the physical constitutive model can accurately characterize hot deformation of pure copper. With dynamic recovery and/or recrystallization. Numerical simulation of an upsetting process is carried out by implementing the constitutive model into commercial software. This model can be put to practical use and be quite promising for improving efficiency of a hot forging process for pure copper components.Изучено деформационное поведение чистой меди при испытании горячих проб на сжатие в диапазоне температур 773 1173 К и скорости деформации 0.001–1.0 с⁻¹, построены соответствующие кривые напряжения пластического течения. Разработан новый метод расчета критического напряжения и напряжения насыщения, представлен количественный анализ деформационного упрочнения и динамического разупрочнения, построена трехступенчатая определяющая модель прогнозирования напряжения пластического течения чистой меди. Как показывает сравнение прогнозируемого и измеренного напряжений пластического течения, с помощью такой модели можно точно описать горячее деформирование чистой меди при динамическом возврате и/или рекристаллизации. Выполнено численное моделирование процесса высадки путем реализации данной модели в рамках коммерческого программного обеспечения. Модель весьма перспективна и может использоваться для повышения эффективности процесса горячей ковки деталей из чистой меди.Вивчено деформаційне поведінку чистої міді при випробуванні гарячих проб на стиск в діапазоні температур 773-1173 К і швидкості деформації 0.001–1.0 с⁻¹, побудовані відповідні криві напружень пластичної течії. Розроблено новий метод розрахунку критичної напруги і напруги насичення, представлений кількісний аналіз деформаційного зміцнення і динамічного знеміцнення, побудована триступенева визначає модель прогнозування напружень пластичної течії чистої міді. Як показує порівняння прогнозованого і виміряного напружень пластичної течії, за допомогою такої моделі можна точно описати гаряче деформування чистої міді при динамічному поверненні і / або рекристалізації. Виконано чисельне моделювання процесу висадки шляхом реалізації даної моделі в рамках комерційного програмного забезпечення. Модель вельми перспективна і може використовуватися для підвищення ефективності процесу гарячого кування деталей з чистої міді

    In the quest of the optimal chondrichthyan for the development of collagen sponges for articular cartilage

    Get PDF
    peer-reviewedThe limited capability of articular cartilage to self-repair renders its regeneration a formidable challenge. In the quest of the optimal material for cartilage scaffold fabrication, the use of collagen type II has been advocated, but its optimal source still remains elusive. Herein, the potential of four [lesser spotted dogfish (Scyliorhinus canicula), thorn back ray (Raja clavata), cuckoo ray (Leucoraja naevus) and blonde ray (Raja brachyuran)] cartilaginous fish (chondrichthyes) derived collagen type II preparation in cartilage engineering was assessed. Collagen type II was extracted using the acid-pepsin method, crosslinked with 4-arm poly (ethylene glycol) succinimidyl glutarate sponges were fabricated and their biophysical, biochemical and biological properties were assessed. Pure collagen type II preparations were obtained from all four chondrichthyes, as revealed by gel electrophoresis. Pore size, porosity, mechanical properties, denaturation temperature, free amine content and resistance to enzymatic degradation of the produced sponges were not significantly (p > 0.05) affected as a function of species. Biological analysis using human adipose derived stem cells revealed no significant (p > 0.05) differences between the groups in cell viability, DNA concentration, metabolic activity, Alcian blue staining and sulphated glycosaminoglycans synthesis. Human adipose derived stem cells seeded on fish-derived scaffolds expressed lower mRNA levels of COL1A1 (fold change ≥ 2.0) and COL3A1 (apart from lesser spotted dogfish; fold change < 2.0) and higher mRNA levels of COL10A1 (fold change ≥ 2.0), COMP (fold change ≥ 2.0), SOX9 (fold change ≥ 2.0), and ACAN (apart from cuckoo ray; fold change < 2.0) than cells grown on tissue culture plastic. Our data suggest that chondrichthyes derived collagen type II has the potential to be used in cartilage engineering

    Visualization of the spatial and spectral signals of orb-weaving spiders, Nephila pilipes, through the eyes of a honeybee

    Get PDF
    It is well known that the honeybee has good color vision. However, the spectral range in which the bee can see is different from that of the human eye. To study how bees view their world of colors, one has to see through the eyes of the bee, not the eyes of a human. A conventional way to examine the color signals that animals can detect is to measure the surface reflectance spectra and compute the quantum catches of each photoreceptor type based on its known spectral sensitivity. Color signal and color contrast are then determined from the loci of these quantum catches in the color space. While the point-by-point measurements of the reflectance spectra using a standard spectrometer have yielded a significant amount of data for analyzing color signals, the lack of spatial information and low sampling efficiency constrain their applications. Using a special filter coating technique, a set of filters with transmission spectra that were closely matched to the bee's sensitivity spectra of three photoreceptor types (UV, blue, and green) was custom made. By placing these filters in front of a UV/VIS-sensitive CCD camera and acquiring images sequentially, we could collect images of a bee's receptor with only three shots. This allowed a direct visualization of how bees view their world in a pseudo-color RGB display. With this imaging system, spatial and spectral signals of the orb-weaving spider, Nephila pilipes, were recorded, and color contrast images corresponding to the bee's spatial resolution were constructed and analyzed. The result not only confirmed that the color markings of N. pilipes are of high chromatic contrast to the eyes of a bee, but it also indicated that the spatial arrangement of these markings resemble flower patterns which may attract bees to visit them. Thus, it is likely that the orb-weaving spider (N. pilipes) deploys a similar strategy to that of the Australian crab spider (Thomisus spectabilis) to exploit the bee's pre-existing preference for flowers with color patterning

    Influence of uniaxial tensile stress on the mechanical and piezoelectric properties of short-period ferroelectric superlattice

    Get PDF
    Tetragonal ferroelectric/ferroelectric BaTiO3/PbTiO3 superlattice under uniaxial tensile stress along the c axis is investigated from first principles. We show that the calculated ideal tensile strength is 6.85 GPa and that the superlattice under the loading of uniaxial tensile stress becomes soft along the nonpolar axes. We also find that the appropriately applied uniaxial tensile stress can significantly enhance the piezoelectricity for the superlattice, with piezoelectric coefficient d33 increasing from the ground state value by a factor of about 8, reaching 678.42 pC/N. The underlying mechanism for the enhancement of piezoelectricity is discussed
    corecore