6,655 research outputs found

    Metopolophium festucae cerealium (Hemiptera: Aphididae) : a new addition to the aphid fauna of North America

    Get PDF
    Metopolophium festucae cerealium (Stroyan) (Hemiptera: Aphididae) was found in wheat fields in the Pacific Northwest in 2011 and 2012. This is the first record of M. f. cerealium in North America. This subspecies can be a serious pest of cereal crops

    Elastic metamaterials with simultaneously negative effective shear modulus and mass density

    Full text link
    We propose a type of elastic metamaterial comprising fluid-solid composite inclusions which can possess negative shear modulus and negative mass density over a large frequency region. Such a solid metamaterial has a unique elastic property that only transverse waves can propagate with a negative dispersion while longitudinal waves are forbidden. This leads to many interesting phenomena such as negative refraction, which is demonstrated by using a wedge sample, and a significant amount of mode conversion from transverse waves to longitudinal waves that cannot occur on the interface of two natural solids

    Nondeterminstic ultrafast ground state cooling of a mechanical resonator

    Full text link
    We present an ultrafast feasible scheme for ground state cooling of a mechanical resonator via repeated random time-interval measurements on an auxiliary flux qubit. We find that the ground state cooling can be achieved with \emph{several} such measurements. The cooling efficiency hardly depends on the time-intervals between any two consecutive measurements. The scheme is also robust against environmental noises.Comment: 4 pages, 3 figure

    Quantum-dot gain without inversion:Effects of dark plasmon-exciton hybridization

    Get PDF
    We propose an initial-state-dependent quantum-dot gain without population inversion in the vicinity of a resonant metallic nanoparticle. The gain originates from the hybridization of a dark plasmon-exciton and is accompanied by efficient energy transfer from the nanoparticle to the quantum dot. This hybridization of the dark plasmon-exciton, attached to the hybridization of the bright plasmon-exciton, strengthens nonlinear light-quantum emitter interactions at the nanoscale, thus the spectral overlap between the dark and the bright plasmons enhances the gain effect. This hybrid system has potential applications in ultracompact tunable quantum devices.Physics, Condensed MatterSCI(E)[email protected]

    Longitudinal Beta-Binomial Modeling using GEE for Over-Dispersed Binomial Data

    Get PDF
    Longitudinal binomial data are frequently generated from multiple questionnaires and assessments in various scientific settings for which the binomial data are often overdispersed. The standard generalized linear mixed effects model may result in severe underestimation of standard errors of estimated regression parameters in such cases and hence potentially bias the statistical inference. In this paper, we propose a longitudinal beta-binomial model for overdispersed binomial data and estimate the regression parameters under a probit model using the generalized estimating equation method. A hybrid algorithm of the Fisher scoring and the method of moments is implemented for computing the method. Extensive simulation studies are conducted to justify the validity of the proposed method. Finally, the proposed method is applied to analyze functional impairment in subjects who are at risk of Huntington disease from a multisite observational study of prodromal Huntington disease

    The Effect of Radiative Cooling on the Sunyaev-Zel'dovich Cluster Counts and Angular Power Spectrum: Analytic Treatment

    Get PDF
    Recently, the entropy excess detected in the central cores of groups and clusters has been successfully interpreted as being due to radiative cooling of the hot intragroup/intracluster gas. In such a scenario, the entropy floors SfloorS_{\rm floor} in groups/clusters at any given redshift are completely determined by the conservation of energy. In combination with the equation of hydrostatic equilibrium and the universal density profile for dark matter, this allows us to derive the remaining gas distribution of groups and clusters after the cooled material is removed. Together with the Press-Schechter mass function we are able to evaluate effectively how radiative cooling can modify the predictions of SZ cluster counts and power spectrum. It appears that our analytic results are in good agreement with those found by hydrodynamical simulations. Namely, cooling leads to a moderate decrease of the predicted SZ cluster counts and power spectrum as compared with standard scenario. However, without taking into account energy feedback from star formation which may greatly suppress cooling efficiency, it is still premature to claim that this modification is significant for the cosmological applications of cluster SZ effect.Comment: 16 pages, 3 figures, uses aastex.cls. ApJ accepte

    Data-driven pattern identification and outlier detection in time series

    Get PDF
    We address the problem of data-driven pattern identification and outlier detection in time series. To this end, we use singular value decomposition (SVD) which is a well-known technique to compute a low-rank approximation for an arbitrary matrix. By recasting the time series as a matrix it becomes possible to use SVD to highlight the underlying patterns and periodicities. This is done without the need for specifying user-defined parameters. From a data mining perspective, this opens up new ways of analyzing time series in a data-driven, bottom-up fashion. However, in order to get correct results, it is important to understand how the SVD-spectrum of a time series is influenced by various characteristics of the underlying signal and noise. In this paper, we have extended the work in earlier papers by initiating a more systematic analysis of these effects. We then illustrate our findings on some real-life data

    A model-based method with joint sparsity constant for direct diffusion tensor estimation

    Get PDF
    Diffusion tensor imaging (DTI) has been widely used for nondestructive characterization of microstructures of myocardium or brain connectivity. It requires repeated acquisition with different diffusion gradients. The long acquisition time greatly limits the clinical application of DTI. In this paper, a novel method, named model-based method with joint sparsity constraint (MB-JSC), effectively incorporates the prior information on the joint sparsity of different diffusion-weighted images in direct estimation of the diffusion tensor from highly undersampled k-space data. Experimental results demonstrate that the proposed method is able to estimate the diffusion tensors more accurately than the existing method when a high net reduction factor is used.published_or_final_versionThe 9th IEEE International Symposium on Biomedical Imaging (ISBI 2012), Barcelona, Spain, 2-5 May 2012. In Proceedings of the 9th ISBI, 2012, p. 510-51

    Walks on weighted networks

    Full text link
    We investigate the dynamics of random walks on weighted networks. Assuming that the edge's weight and the node's strength are used as local information by a random walker, we study two kinds of walks, weight-dependent walk and strength-dependent walk. Exact expressions for stationary distribution and average return time are derived and confirmed by computer simulations. We calculate the distribution of average return time and the mean-square displacement for two walks on the BBV networks, and find that a weight-dependent walker can arrive at a new territory more easily than a strength-dependent one.Comment: 4 pages, 5 figures. minor modifications. Comments and suggestions are favored by the author

    Single-cell epigenomic variability reveals functional cancer heterogeneity.

    Get PDF
    BackgroundCell-to-cell heterogeneity is a major driver of cancer evolution, progression, and emergence of drug resistance. Epigenomic variation at the single-cell level can rapidly create cancer heterogeneity but is difficult to detect and assess functionally.ResultsWe develop a strategy to bridge the gap between measurement and function in single-cell epigenomics. Using single-cell chromatin accessibility and RNA-seq data in K562 leukemic cells, we identify the cell surface marker CD24 as co-varying with chromatin accessibility changes linked to GATA transcription factors in single cells. Fluorescence-activated cell sorting of CD24 high versus low cells prospectively isolated GATA1 and GATA2 high versus low cells. GATA high versus low cells express differential gene regulatory networks, differential sensitivity to the drug imatinib mesylate, and differential self-renewal capacity. Lineage tracing experiments show that GATA/CD24hi cells have the capability to rapidly reconstitute the heterogeneity within the entire starting population, suggesting that GATA expression levels drive a phenotypically relevant source of epigenomic plasticity.ConclusionSingle-cell chromatin accessibility can guide prospective characterization of cancer heterogeneity. Epigenomic subpopulations in cancer impact drug sensitivity and the clonal dynamics of cancer evolution
    corecore