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ABSTRACT 

Diffusion tensor imaging (DTI) has been widely used for 
nondestructive characterization of microstructures of 
myocardium or brain connectivity. It requires repeated 
acquisition with different diffusion gradients. The long 
acquisition time greatly limits the clinical application of DTI. 
In this paper, a novel method, named model-based method 
with joint sparsity constraint (MB-JSC), effectively 
incorporates the prior information on the joint sparsity of 
different diffusion-weighted images in direct estimation of 
the diffusion tensor from highly undersampled k-space data. 
Experimental results demonstrate that the proposed method 
is able to estimate the diffusion tensors more accurately than 
the existing method when a high net reduction factor is used. 

 
Index Terms—Diffusion tensor imaging (DTI), model-

based (MB) method, joint sparsity constraint, distributed 
compressed sensing 
 

1. INTRODUCTION 

Magnetic resonance diffusion tensor imaging (DTI)[1] 
provides a non-invasive method for in vivo evaluation of 
tissue water mobility. It has been widely used for 
nondestructively characterizing microstructures of 
myocardium or brain connectivity. Typically, a minimum of 
seven scans of the same images (one reference image plus 
six diffusion-weighted images) were acquired and 
reconstructed, from which DTI indices, such as fractional 
anisotropy (FA) and apparent diffusion coefficient (ADC) 
representing the extent of diffusion anisotropy and the 
average diffusion rate, were obtained.  

However, long acquisition time greatly limits the 
practical application of DTI. To accelerate the imaging 
speed, there are mainly two strategies to obtain diffusion 
tensor D from undersampled k-space data. The first one is to 
reconstruct all diffusion weighted images (DWI) first and 
then estimate D by conventional least squares fitting [2, 3]. 
These methods often need additional reference data. 
Compressed sensing (CS) has also been applied to 

reconstruct all DW images under the total variation 
constraint [4]. However, the number of unknowns is usually 
very large, which may lead to reconstruction errors and thus 
fitting errors in diffusion tensors. The second strategy is the 
model-based (MB) method which fits diffusion tensors 
directly and nonlinearly to the acquired data based on the 
data consistency in the DTI model without image 
reconstruction [5, 6]. This strategy is sensitive to the initial 
diffusion tensor because the measured data correspond to 
the continuous Fourier transform whereas the estimation is 
discrete [7]. Therefore, it is necessary to introduce a 
regularization term. Additionally, most existing methods can 
only achieve accelerations up to a factor of two with 
Cartesian undersampling. In this work, we propose a novel 
model-based method using a joint sparsity constraint [8] 
(MB-JSC). In addition to the benefit of fewer unknowns and 
no error propagation in the MB method, the proposed 
method also greatly reduces the number of measurements 
and improves the robustness to initial diffusion tensor.  
    

2. PROPOSED METHOD 

In DTI, the j-th diffusion-weighted image jf  can be 
represented as  

                                  0

T
j j jbg g i

j e e ϕ−= Df I                              (1) 
where I0 is the reference image, which was reconstructed 
separately and then used to estimate the diffusion tensor D 
in this work, b is the diffusion weighting factor, jg  is the j-

th diffusion encoding vector and jϕ is the corrected image 
phase.  

According to Eq. (1), we can see that the diffusion 
weightings only modulate the intensity of each diffusion-
weighted image. It means if a pixel in the reference image I0 
is nonzero, the corresponding pixels in DWIs should also be 
nonzero. This joint sparsity property along the diffusion 
directions of jf ’s motivates the application of distributed 
compressed sensing (DCS) [5] to DTI. Specifically, the 
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transform sparsness in the spatial domain is enforced using 
the L1 norm minimization and the information of common 
non-zero locations along the diffusion directions (i.e., non-
sparseness) is exploited using the L2 norm minimization. 
With this prior, the cost function is  

( ) 2

1 21,22
- , [ , , , ]j j j J

j

λ= + =D d P Ff C C f f f (2) 

where jd  is the measured k-space of jf , jP  is the 
undersampling matrix for the j-th diffusion-weighted k-
space and is different for each diffusion direction. This 
scheme causes artifacts to be largely incoherent across 
diffusion tensor directions. F is Fourier transform. C is the 
sparse coefficients matrix with size N (#image pixel) × J 
(#diffusion direction), 

1,2
 is the mixed L1-L2 norm of 

matrix, which applies the L2 norm to rows of C first (to 
promote nonsparsity) and then applying the L1 norm to the 
resulting vector (to promote sparsity).  is the sparsifying 
transform.  is the regularization parameter whose value is 
determined empirically. The direct fitting of diffusion tensor 
to the undersampled k-space data using the joint sparsity 
constraint can be formulated as ( )arg min

D
D . 

The diffusion tensor is represented as  

                 
      

      

      

xx xy xz

xy yy yz

xz yz zz

D D D

D D D

D D D

=D                                   (3) 

Similar to Ref.[6], we expand the first exponential term in 
Eq.(1) as  

         
                +2 2 2

T
n n xxn xx yyn yy zzn zz

xyn xy yzn xy xzn xz

bg Dg b D b D b D

b D b D b D

= + +

+ +
             (4) 

where 2
xxn xnb bg= , 2

yyn ynb bg= , xyn xn ynb bg g= , 2
zzn znb bg= ,  

yzn yn znb bg g= , xzn xn znb bg g= , which are scalar values. 
A nonlinear conjugate gradient descent algorithm is used 

to solve the minimization of Eq. (2). The derivative of Eq.(2) 
is deduced to estimate the diffusion tensors. As 

1
 is the 

sum of absolute values, which is not a smooth function and 
the derivative could not be deduced, we exploit the 
approximation *x x x μ= + used in Ref. [9], where μ is a 
positive smoothing parameter, * represents the complex 
conjugate. The derivative with respect to each of the 
diffusion coefficients can be found to be 
          ' 1 1 * 1( ) 2( ( ) ( ))j j j jλ− − −= − +f F d F PFf W f ,        (5) 
where W is a diagonal matrix with the v-th diagonal 

elements ( ) ( )2 2v v v
μ

∗
= +W C C  

* ''( ) ( ) ( )xx xxn j j
j

D b= − f f  

* ''( ) ( ) ( )yy yyn j j
j

D b= − f f  

                    * ''( ) ( ) ( )zz zzn j j
j

D b= − f f                     (6) 

* ''( ) 2 ( ) ( )xy xyn j j
j

D b= − f f  

* ''( ) 2 ( ) ( )yz yzn j j
j

D b= − f f  

* ''( ) 2 ( ) ( )xz xzn j j
j

D b= − f f  

The diffusion coefficients are estimated through iteratively 
updating each parameter, ,xx yyD D etc. until the diffusion 
parameters converge. The pseudo-code of the proposed 
method is shown in Algorithm 1.  
 

Algorithm 1. Pseudocode for MB-JSC 
Input: d – k-space measurements 

P  – the undersampling matrix 
Optional parameters: 
TolGrad – stopping criteria by gradient magnitude 
MaxIter – strpping criteria by number of iterations 

,α β – line search parameters 
Output: 
D  – the numerical approximation of diffusion tensor to 
Eq.(2) 
%initialization  

1( )
tensor fitted  using least square
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To demonstrate the performance of the proposed method, 

a set of fully-sampled Cartesian k-space DTI data acquired 
on a 7T Bruker Scanner (Bruker BioSpin) was used to 
simulate the undersampling k-space data. The spin-echo 
diffusion tensor imaging (SE-DTI) was performed on an 
adult SD rat to acquire one reference image and six 
diffusion-weighted images, with b value = 1000 s/mm2, 
TR/TE = 1500/29ms, NEX=10, matrix size = 256×256.  

The variable density (MBVD) sampling scheme, usually 
used in compressed sensing, was applied to simulate net 

511



reduction factors of R = 2, 3 and 4 on the phase encoding 
direction.  represents finite-difference here. The Fractional 
anisotropy (FA) map and mean diffusivity (MD) map 
calculated from the reconstructions of full data (see Fig.1) 
were used as the gold standard. The performance of the 
proposed method, compared with the model-based method, 
was quantitatively assessed by calculating the root mean 
squared error (RMSE) of FA and MD. All methods were 
implemented in MATLAB. The reconstruction iteration 
converges within 5 outer loops and 20 inner iterations. 

 
Fig.1 The Fractional anisotropy (FA) map and mean diffusivity 
(MD) map calculated from the reconstructions of full data. 
 

3. RESULTS AND DISCUSSION 
 

Figures 2 and 3 show the FA and MD maps estimated using 
MB and MB-JSC methods with R=2, 3 and 4, respectively. 
We can see that the maps estimated using two methods at 
R=2 are in good agreement with the gold standard. The FA 
and MD maps from the proposed MB-JSC method exhibits 
less noise than those from the full data and MB method due 
to the additional constraint. When R= 3, the artifacts appear 
in the maps from MB, but are negligible in those from MB-
JSC. When the k-space was heavily undersampled with R=4, 
the maps estimated using the MB-JSC method still only 
show negligible artifacts while the MB method presents 
severe artifacts (indicated by red boxes). The improvement 
of MB-JSC over MB is also demonstrated in the RMSE of 
FA and MD listed in Table 1. RMSE of MD is reported in 

-3 210 /cm s . These values are consistent with the above 
observations.  

The estimated maps using a random initial D with R=2 
are shown in Fig. 4. The MB method presents obvious 
artifacts. It agrees with the observations in [6] that the MB 
method is sensitive to the initial D. In contrast, MB-JSC 
doesn’t exhibit large variations with different initial D. It 
suggests that the introduction of the joint sparsity constraint 
can improve the robustness of model-based methods. 

The main advantage of the proposed method is that the 
joint sparse constraint allows the intra-signal correlations to 
be exploited in all diffusion-weighted images. The scan time 
could thereby be reduced with the improved model-based 
reconstruction method by acquiring less. Even when the 
reduction factor R reaches 4, the directly reconstructed 

parameters are still acceptable. The benefit will be more 
appealing in 3D cases.  

For multichannel coil data, complex coil sensitivity maps 
lS can be incorporated into the method:  

          ( ) ( ) 2

, 1,22
-l j l j

l j

λ= +D d PF S f C            (7) 

where ,l jd  is the measured k-space data from coil l at the j-
th diffusion-weighted image . 

 
  (a) R = 2 MB                       (b) R=2 MB-JSC 

 
    (c) R = 3 MB                      (d) R = 3 MB-JSC 

  
  (e) R = 4 MB                     (f) R = 4 MB-JSC 

Fig.2 FA maps reconstructed using MB (left column) and MB-JSC 
(right column) methods.        

4. CONCLUSION 
 

A novel model-based method with joint sparse constraint is 
proposed to directly estimate the diffusion tensor from 
undersampled k-space data. Compared with the traditional 
model-based method, the proposed method can significantly 
reduce the artifacts due to undersampling, especially when 
the acceleration factor becomes high. The quantified 
performance metrics demonstrate that the proposed method 
can improve the estimation accuracy of the model-based 
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method. The method has potential to be applied in biological 
tissue characterization, such as neural, muscle and heart. 

 
(a) R = 2 MB                             (b) R=2 MB-JSC 

 
(c) R = 3 MB                             (d) R = 3 MB-JSC 

 
(e) R = 4 MB                          (f) R = 4 MB-JSC 

Fig 3. Mean diffusivity maps reconstructed using different methods. 
The left column is for model-based method and the right column is 
for MB-JSC.  
 
Table 1. The quantified performance metrics in the root-
mean-squared errors (RMSE) 

 MB MB-JSC 
RMSE FA MD FA MD 
R=2 0.0245 5.0941e-5 0.0320 5.2712e-5
R=3 0.0447 8.1461e-5 0.0422 7.0220e-5
R=4 0.0546 9.2823e-5 0.0489 8.0143e-5
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Fig 4. FA and MD maps using random initial D with R = 2. 
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