2,183 research outputs found

    GIS-based Economic Cost Estimation of Traffic Accidents in St. Louis, Missouri

    Get PDF
    AbstractThe economic loss due to total traffic accidents in St. Louis remains high every year. This paper presents an effective approach to spatially identifying potential casualty areas and their economic losses. In this study, five years of traffic accident data, from 2007 to 2011, collected in the City of St. Louis and the adjacent counties, is used. Using Geographic Information System (GIS)-based techniques, e.g. Kernel Density Estimation (KDE), two maps are generated and compared: 1) traffic accident rate map based on the number of traffic accidents per year and 2) the economic costs map. The locations with high economic costs but with low accident rates are identified and shown in a 3-D visualization format. The results can be used as a foundation for the traffic accident cost estimation related research and serves as a guideline for practitioners to investigate the areas with high traffic accident severity levels

    Measuring the Quality of Service for High Occupancy Toll Lanes Operations

    Get PDF
    AbstractHigh Occupancy Toll (HOT) lane systems have been proposed as one of the most applicable countermeasures against freeway congestion. Under HOT lane operational scheme, a Single Occupancy Vehicle (SOV) can pay to access HOT lanes in exchange of travel time saving or enhanced trip reliability when excess HOT lane capacity is available. Compared with regular freeway facilities, HOT lane systems demonstrate unique characteristics in facility capacity, driver behavior, travel pattern, demand modeling, and trip reliability. This study aims at conducting a comprehensive performance analysis on two representative HOT lane systems of State Route 167 in Washington and I-394 MnPass in Minnesota based on the field data collected from traffic sensors and transponder toll tags. Performance measurements are proposed to quantify the quality of service for HOT lane operations. Three critical issues are addressed in this study: 1) the speed-flow relationships in HOT lane systems, 2) quantified system-wide travel time savings and travel time reliability achieved, 3) SOVs tolling incentives. Based on the empirical analysis and evaluation results for the SR 167 and I-394 MnPass HOT lane systems, operational problems and challenges are also identified. Although the HOT lane system preserves favorable travel reliability, under-utilized HOT lane capacities were observed. The existing tolling strategies may be modified for better SOV allocation for HOT lane usages and further optimize the overall HOT system operations. The research findings greatly advance our understanding on HOT lane system operation mechanisms and are complementary to the freeway facility performance analysis provided by Highway Capacity Manual 2000

    Complex 3D microfluidic architectures formed by mechanically guided compressive buckling.

    Get PDF
    Microfluidic technologies have wide-ranging applications in chemical analysis systems, drug delivery platforms, and artificial vascular networks. This latter area is particularly relevant to 3D cell cultures, engineered tissues, and artificial organs, where volumetric capabilities in fluid distribution are essential. Existing schemes for fabricating 3D microfluidic structures are constrained in realizing desired layout designs, producing physiologically relevant microvascular structures, and/or integrating active electronic/optoelectronic/microelectromechanical components for sensing and actuation. This paper presents a guided assembly approach that bypasses these limitations to yield complex 3D microvascular structures from 2D precursors that exploit the full sophistication of 2D fabrication methods. The capabilities extend to feature sizes <5 μm, in extended arrays and with various embedded sensors and actuators, across wide ranges of overall dimensions, in a parallel, high-throughput process. Examples include 3D microvascular networks with sophisticated layouts, deterministically designed and constructed to expand the geometries and operating features of artificial vascular networks

    Surgical treatment and prognostic analysis for gastrointestinal stromal tumors (GISTs) of the small intestine: before the era of imatinib mesylate

    Get PDF
    BACKGROUND: Gastrointestinal stromal tumors (GISTs), the most common type of mesenchymal tumors of the gastrointestinal (GI) tract, demonstrate positive kit staining. We report our surgical experience with 100 small intestine GIST patients and identify predictors for long-term disease-free survival (DFS) and overall survival (OS) to clarify the difference between high- and low-risk patients. METHODS: The clinicopathologic and follow-up records of 100 small intestine GIST patients who were treated at Chung Gung Memorial Hospital between 1983 and 2002 were retrospectively reviewed. Clinical and pathological factors were assessed for long-term DFS and OS by using a univariate log-rank test and a multivariate Cox proportional hazard model. RESULTS: The patients included 52 men and 48 women. Their ages ranged from 27 to 82 years. Among the 85 patients who underwent curative resection, 44 (51.8%) developed disease recurrence (liver metastasis was the most common form of recurrence). The follow-up period ranged from 5 to 202 months (median: 33.2 months). The 1-, 3-, and 5-year DFS and OS rates were 85.2%, 53.8%, and 43.7%, and 91.5%, 66.6%, and 50.5%, respectively. Using multivariate analysis, it was found that high tumor cellularity, mitotic count >5/50 high-power field, and a Ki-67 index ≧10% were three independent factors that were inversely associated with DFS. However, absence of tumor perforation, mitotic count < 5/50 high power field, and tumor with low cellularity were predictors of long-term favorable OS. CONCLUSION: Tumors with low cellularity, low mitotic count, and low Ki-67 index, which indicate low risk, predict a more favorable DFS for small intestine GIST patients undergoing curative resection. Absence of tumor perforation with low mitotic count and low cellularity, which indicates low risk, can predict long-term OS for small intestine GIST patients who have undergone curative resection

    Microarray Analysis in the Archaeon Halobacterium salinarum Strain R1

    Get PDF
    Background: Phototrophy of the extremely halophilic archaeon Halobacterium salinarum was explored for decades. The research was mainly focused on the expression of bacteriorhodopsin and its functional properties. In contrast, less is known about genome wide transcriptional changes and their impact on the physiological adaptation to phototrophy. The tool of choice to record transcriptional profiles is the DNA microarray technique. However, the technique is still rarely used for transcriptome analysis in archaea. Methodology/Principal Findings: We developed a whole-genome DNA microarray based on our sequence data of the Hbt. salinarum strain R1 genome. The potential of our tool is exemplified by the comparison of cells growing under aerobic and phototrophic conditions, respectively. We processed the raw fluorescence data by several stringent filtering steps and a subsequent MAANOVA analysis. The study revealed a lot of transcriptional differences between the two cell states. We found that the transcriptional changes were relatively weak, though significant. Finally, the DNA microarray data were independently verified by a real-time PCR analysis. Conclusion/Significance: This is the first DNA microarray analysis of Hbt. salinarum cells that were actually grown under phototrophic conditions. By comparing the transcriptomics data with current knowledge we could show that our DNA microarray tool is well applicable for transcriptome analysis in the extremely halophilic archaeon Hbt. salinarum. The reliability of our tool is based on both the high-quality array of DNA probes and the stringent data handling including MAANOVA analysis. Among the regulated genes more than 50% had unknown functions. This underlines the fact that haloarchaeal phototrophy is still far away from being completely understood. Hence, the data recorded in this study will be subject to future systems biology analysis

    Glyoxalase-I Is a Novel Prognosis Factor Associated with Gastric Cancer Progression

    Get PDF
    Glyoxalase I (GLO1), a methylglyoxal detoxification enzyme, is implicated in the progression of human malignancies. The role of GLO1 in gastric cancer development or progression is currently unclear. The expression of GLO1 was determined in primary gastric cancer specimens using quantitative polymerase chain reaction, immunohistochemistry (IHC), and western blotting analyses. GLO1 expression was higher in gastric cancer tissues, compared with that in adjacent noncancerous tissues. Elevated expression of GLO1 was significantly associated with gastric wall invasion, lymph node metastasis, and pathological stage, suggesting a novel role of GLO1 in gastric cancer development and progression. The 5-year survival rate of the lower GLO1 expression groups was significantly greater than that of the higher expression groups (log rank P = 0.0373) in IHC experiments. Over-expression of GLO1 in gastric cancer cell lines increases cell proliferation, migration and invasiveness. Conversely, down-regulation of GLO1 with shRNA led to a marked reduction in the migration and invasion abilities. Our data strongly suggest that high expression of GLO1 in gastric cancer enhances the metastasis ability of tumor cells in vitro and in vivo, and support its efficacy as a potential marker for the detection and prognosis of gastric cancer

    Population-based targeted sequencing of 54 candidate genes identifies PALB2 as a susceptibility gene for high-grade serous ovarian cancer

    Get PDF
    Purpose: The known epithelial ovarian cancer (EOC) susceptibility genes account for less than 50% of the heritable risk of ovarian cancer suggesting that other susceptibility genes exist. The aim of this study was to evaluate the contribution to ovarian cancer susceptibility of rare deleterious germline variants in a set of candidate genes. Methods: We sequenced the coding region of 54 candidate genes in 6385 invasive EOC cases and 6115 controls of broad European ancestry. Genes with an increased frequency of putative deleterious variants in cases versus controls were further examined in an independent set of 14 135 EOC cases and 28 655 controls from the Ovarian Cancer Association Consortium and the UK Biobank. For each gene, we estimated the EOC risks and evaluated associations between germline variant status and clinical characteristics. Results: The ORs associated for high-grade serous ovarian cancer were 3.01 for PALB2 (95% CI 1.59 to 5.68; p=0.00068), 1.99 for POLK (95% CI 1.15 to 3.43; p=0.014) and 4.07 for SLX4 (95% CI 1.34 to 12.4; p=0.013). Deleterious mutations in FBXO10 were associated with a reduced risk of disease (OR 0.27, 95% CI 0.07 to 1.00, p=0.049). However, based on the Bayes false discovery probability, only the association for PALB2 in high-grade serous ovarian cancer is likely to represent a true positive. Conclusions: We have found strong evidence that carriers of PALB2 deleterious mutations are at increased risk of high-grade serous ovarian cancer. Whether the magnitude of risk is sufficiently high to warrant the inclusion of PALB2 in cancer gene panels for ovarian cancer risk testing is unclear; much larger sample sizes will be needed to provide sufficiently precise estimates for clinical counselling

    Fluctuating temperature modifies heat-mortality association around the globe

    Get PDF
    Studies have investigated the effects of heat and temperature variability (TV) on mortality. However, few assessed whether TV modifies the heat-mortality association. Data on daily temperature and mortality in the warm season were collected from 717 locations across 36 countries. TV was calculated as the standard deviation of the average of the same and previous days’ minimum and maximum temperatures. We used location-specific quasi-Poisson regression models with an interaction term between the cross-basis term for mean temperature and quartiles of TV to obtain heat-mortality associations under each quartile of TV, and then pooled estimates at the country, regional, and global levels. Results show the increased risk in heat-related mortality with increments in TV, accounting for 0.70% (95% confidence interval [CI]: −0.33 to 1.69), 1.34% (95% CI: −0.14 to 2.73), 1.99% (95% CI: 0.29–3.57), and 2.73% (95% CI: 0.76–4.50) of total deaths for Q1–Q4 (first quartile–fourth quartile) of TV. The modification effects of TV varied geographically. Central Europe had the highest attributable fractions (AFs), corresponding to 7.68% (95% CI: 5.25–9.89) of total deaths for Q4 of TV, while the lowest AFs were observed in North America, with the values for Q4 of 1.74% (95% CI: −0.09 to 3.39). TV had a significant modification effect on the heat-mortality association, causing a higher heat-related mortality burden with increments of TV. Implementing targeted strategies against heat exposure and fluctuant temperatures simultaneously would benefit public health
    corecore