7 research outputs found

    Spring Ephemerals Adapt to Extremely High Light Conditions via an Unusual Stabilization of Photosystem II.

    Get PDF
    Ephemerals, widely distributed in the Gobi desert, have developed significant characteristics to sustain high photosynthetic efficiency under high light (HL) conditions. Since the light reaction is the basis for photosynthetic conversion of solar energy to chemical energy, the photosynthetic performances in thylakoid membrane of the spring ephemerals in response to HL were studied. Three plant species, namely two C3 spring ephemeral species of Cruciferae: Arabidopsis pumila (A. pumila) and Sisymbrium altissimum (S. altissimum), and the model plant Arabidopsis thaliana (A. thaliana) were chosen for the study. The ephemeral A. pumila, which is genetically close to A. thaliana and ecologically in the same habitat as S. altissimum, was used to avoid complications arising from the superficial differences resulted from comparing plants from two extremely contrasting ecological groups. The findings manifested that the ephemerals showed significantly enhanced activities of photosystem (PS) II under HL conditions, while the activities of PSII in A. thaliana were markedly decreased under the same conditions. Detailed analyses of the electron transport processes revealed that the increased plastoquinone pool oxidization, together with the enhanced PSI activities, ensured a lowered excitation pressure to PSII of both ephemerals, and thus facilitated the photosynthetic control to avoid photodamage to PSII. The analysis of the reaction centers of the PSs, both in terms of D1 protein turnover kinetics and the long-term adaptation, revealed that the unusually stable PSs structure provided the basis for the ephemerals to carry out high photosynthetic performances. It is proposed that the characteristic photosynthetic performances of ephemerals were resulted from effects of the long-term adaptation to the harsh environments

    Electrostatic adsorption of a fluorophores-modified light-harvesting complex II on TiO2 photoanodes enhances photovoltaic performance

    No full text
    The major light-harvesting complex of photosystem II, or LHCII, has been utilized in photovoltaic applications because of its high pigment density. In vitro assembled recombinant LHCII is a modifiable biomimetic material for solar energy conversion. In this report, we assemble a modified recombinant LHCII from apoproteins covalently conjugated artificial fluorophores Atto 590 which absorb greatly near visible green region, where LHCII possesses relatively weak absorption. The absorption and fluorescence excitation spectra indicate that the modified recombinant LHCII possesses enhanced light harvesting capacity because Atto 590 molecules efficiently transfer energy to LHCII. The unmodified or modified recombinant LHCII is then adsorbed on the TiO2 electrode respectively to construct sensitized solar cells, both of which present remarkable photovoltaic enhancement. The incident photon-to-electron conversion efficiency measurements confirm the contribution of the artificial fluorophores. The modified recombinant LHCII sensitized solar cell presents 9.1% increase in open circuit voltage and 13.6% increase in short-circuit current density, compared to the unmodified one. These results suggest that modifications of the recombinant LHCII are feasible ways to enhance its performance in biophotovoltaic cells

    Neoxanthin affects the stability of the C2S2M2-type photosystem II supercomplexes and the kinetics of state transition in Arabidopsis

    No full text
    Neoxanthin (Neo), which is only bound to the peripheral antenna proteins of photosystem (PS) II, is a conserved carotenoid in all green plants. It has been demonstrated that Neo plays an important role in photoprotection and its deficiency fails to impact LHCII stability in vitro and indoor plant growth in vivo. Whether Neo is involved in maintaining the PSII complex structure or adaptive mechanisms for the everchanging environment has not yet been elucidated. In this study, the role of Neo in maintaining the structure and function of the PSII-LHCII supercomplexes was studied using Neo deficient Arabidopsis mutants. Our results show that Neo deficiency had little effect on the electron transport capacity and the plant fitness, but the PSII-LHCII supercomplexes were significantly impacted by the lack of Neo. In the absence of Neo, the M-type LHCII trimer cannot effectively associate with the C2S2-type PSII-LHCII supercomplexes even in moderate light conditions. Interestingly, Neo deficiency also leads to decreased PSII protein phosphorylation but rapid transition from state 1 to state 2. We suggest that Neo might enforce the interactions between LHCII and the minor antennas and that the absence of Neo makes M-type LHCII disassociate from the PSII complex, leading to the disassembly of the PSII-LHCII C2S2M2 supercomplexes, which results in alterations in the phosphorylation patterns of the thylakoid photosynthetic proteins and the kinetics of state transition

    Photosynthetic inner antenna CP47 plays important roles in ephemeral plants in adapting to high light stress

    No full text
    Throughout 3.5 billion years of evolution, photosynthesis of land plants has developed a complicated antenna system to cope with the ever-changing environments. The antenna system of photosystem (PS) II includes the outer antennae and inner antennae. The inner antennae CP43 and CP47, located in the closest peripheral of PSII reaction center (RC), play important roles in facilitating excitation energy transport from the outer antennae to the PSII RC. Although PSII RC is the last station of energy transport, it is the inner antenna CP47, not the RC, which possesses the lowest energy level in PSII. Berteroa incana (B. incana), which is a vascular plant grown in the Gobi region, can sustain very high photosynthesis capacity under very high light conditions. It has been discovered that the thylakoid membrane of B. incana possesses a unique low fluorescence emission spectrum because the fluorescence emission of CP47 (695 nm) is the main fluorescence emission peak of PSII. In this paper, the thylakoid membrane, isolated from B. incana grown under a light condition of 100 mu M photons m(-2) s(-1) and subjected to high light treatment (1600 mu M photons m(-2) s(-1) for 1.5 h or 3 h) was employed for the research. It has been found that the high fluorescence emission of CP47 decreased remarkably upon exposure to the high light treatment. Further observation revealed that the drastic changes in the CP47 fluorescence emission were accompanied by a slight reduction in the amount of CP47 and an enhancement of the CP29-LHCII-CP24 as-sembly. It is proposed that CP47 enables the functional switch between the excitation energy transfer towards PSII RC, and the overexcitation quenching in the PSII core. Together with CP43, CP47 plays important roles in regulating excitation energy distribution in PSII core complexes
    corecore