337 research outputs found

    IL-2 Therapy Diminishes Renal Inflammation and the Activity of Kidney-Infiltrating CD4+ T Cells in Murine Lupus Nephritis

    Get PDF
    An acquired deficiency of interleukin-2 (IL-2) and related disturbances in regulatory T cell (Treg) homeostasis play an important role in the pathogenesis of systemic lupus erythematosus (SLE). Low-dose IL-2 therapy was shown to restore Treg homeostasis in patients with active SLE and its clinical efficacy is currently evaluated in clinical trials. Lupus nephritis (LN), a challenging organ manifestation in SLE, is characterized by the infiltration of pathogenic CD4+ T cells into the inflamed kidney. However, the role of the Treg-IL-2 axis in the pathogenesis of LN and the mode of action of IL-2 therapy in the inflamed kidneys are still poorly understood. Using the (NZB × NZW) F1 mouse model of SLE we studied whether intrarenal Treg are affected by a shortage of IL-2 in comparison with lymphatic organs and whether and how intrarenal T cells and renal inflammation can be influenced by IL-2 therapy. We found that intrarenal Treg show phenotypic signs that are reminiscent of IL-2 deprivation in parallel to a progressive hyperactivity of intrarenal conventional CD4+ T cells (Tcon). Short-term IL-2 treatment of mice with active LN induced an expansion the intrarenal Treg population whereas long-term IL-2 treatment reduced the activity and proliferation of intrarenal Tcon, which was accompanied by a clinical and histological amelioration of LN. The association of these immune pathologies with IL-2 deficiency and their reversibility by IL-2 therapy provides important rationales for an IL-2-based immunotherapy of LN.DFG, SFB 650, Zelluläre Ansätze zur Suppression unerwünschter Immunreaktionen - From Bench to Bedsid

    Prophylactic inhibition of soluble epoxide hydrolase delays onset of nephritis and ameliorates kidney damage in NZB/W F1 mice

    Get PDF
    Epoxy-fatty-acids (EpFAs), cytochrome P450 dependent arachidonic acid derivatives, have been suggested to have anti-inflammatory properties, though their effects on autoimmune diseases like systemic lupus erythematosus (SLE) have yet to be investigated. We assessed the influence of EpFAs and their metabolites in lupus prone NZB/W F1 mice by pharmacological inhibition of soluble epoxide hydrolase (sEH, EPHX2). The sEH inhibitor 1770 was administered to lupus prone NZB/W F1 mice in a prophylactic and a therapeutic setting. Prophylactic inhibition of sEH significantly improved survival and reduced proteinuria. By contrast, sEH inhibitor-treated nephritic mice had no survival benefit; however, histological changes were reduced when compared to controls. In humans, urinary EpFA levels were significantly different in 47 SLE patients when compared to 10 healthy controls. Gene expression of EPHX2 was significantly reduced in the kidneys of both NZB/W F1 mice and lupus nephritis (LN) patients. Correlation of EpFAs with SLE disease activity and reduced renal EPHX gene expression in LN suggest roles for these components in human disease

    Predictors of graft survival at diagnosis of antibody‐mediated renal allograft rejection: a retrospective single‐center cohort study

    Get PDF
    Antibody-mediated rejection (ABMR) is a major cause of graft loss in renal transplantation. We assessed the predictive value of clinical, pathological, and immunological parameters at diagnosis for graft survival. We investigated 54 consecutive patients with biopsy-proven ABMR. Patients were treated according to our current standard regimen followed by triple maintenance immunosuppression. Patient characteristics, renal function, and HLA antibody status at diagnosis, baseline biopsy results, and immunosuppressive treatment were recorded. The risk of graft loss at 24 months after diagnosis and the eGFR slope were assessed. Multivariate analysis showed that eGFR at diagnosis and chronic glomerulopathy independently predict graft loss (HR 0.94; P = 0.018 and HR 1.57; P = 0.045) and eGFR slope (beta 0.46; P < 0.001). Cyclophosphamide treatment (6x 15 mg/m²) plus high-dose intravenous immunoglobulins (IVIG) (1.5 g/kg) was superior compared with single-dose rituximab (1x 500 mg) plus low-dose IVIG (30 g) (HR 0.10; P = 0.008 and beta 10.70; P = 0.017) and one cycle of bortezomib (4x 1.3 mg/m(2)) plus low-dose IVIG (HR 0.16; P = 0.049 and beta 11.21; P = 0.010) regarding the risk of graft loss and the eGFR slope. In conclusion, renal function at diagnosis and histopathological signs of chronic ABMR seem to predict graft survival independent of the applied treatment regimen. Stepwise modifications of the treatment regimen may help to improve outcome

    Microvascular inflammation is a risk factor in kidney transplant recipients with very late conversion from calcineurin inhibitor-based regimens to belatacept

    Get PDF
    Background: In de novo kidney transplant recipients (KTR) treatment with belatacept has been established as a comparable option as maintenance immunosuppression, preferably as a strategy to convert from calcineurin inhibitor (CNI)- to belatacept-based immunosuppression. Switch to belatacept demonstrated improved renal function in patients with CNI-induced nephrotoxicity, but risk of transplant rejection and the development of donor-specific antibodies (DSA) are still a matter of debate. Only few data are available in patients at increased immunological risk and late after transplantation. Methods: We analyzed 30 long-term KTR (including 2 combined pancreas-KTR) converted from CNI to belatacept > 60 months after transplantation with moderate to severe graft dysfunction (GFR ≤ 45 mL/min). Biopsies were classified according to the Banff 2015 criteria. Group differences were assessed in a univariate analysis using Mann Whitney U or Chi square test, respectively. Multivariate analysis of risk factors for treatment failure was performed using a binary logistic regression model including significant predictors from univariate analysis. Fifty-six KTR matched for donor and recipient characteristics were used as a control cohort remaining under CNI-treatment. Results: Patient survival in belatacept cohort at 12/24 months was 96.7%/90%, overall graft survival was 76.7 and 60.0%, while graft survival censored for death was 79.3%/66.7%. In patients with functioning grafts, median GFR improved from 22.5 mL/min to 24.5 mL/min at 24 months. Positivity for DSA at conversion was 46.7%. From univariate analysis of risk factors for graft loss, GFR < 25 mL/min (p = 0.042) and Banff microvascular inflammation (MVI) sum score ≥ 2 (p = 0.023) at conversion were significant at 24 months. In the analysis of risk factors for treatment failure, a MVI sum score ≥ 2 was significant univariately (p = 0.023) and in a bivariate (p = 0.037) logistic regression at 12 months. DSA-positivity was neither associated with graft loss nor treatment failure. The control cohort had comparable graft survival outcomes at 24 months, albeit without increase of mean GFR in patients with functioning grafts (ΔGFR of - 3.6 ± 8.5 mL/min). Conclusion: Rescue therapy with conversion to belatacept is feasible in patients with worsening renal function, even many years after transplantation. The benefit in patients with MVI and severe GFR impairment remains to be investigated

    The relationship between proteinuria and allograft survival in patients with transplant glomerulopathy: a retrospective single‐center cohort study

    Get PDF
    Proteinuria and transplant glomerulopathy (TG) are common in kidney transplantation. To date, there is limited knowledge regarding proteinuria in different types of TG and its relationship to allograft survival. A retrospective cohort analysis of TG patients from indication biopsies was performed to investigate the relationship of proteinuria, histology, and graft survival. One hundred and seven (57.5%) out of 186 TG patients lost their grafts with a median survival of 14 [95% confidence interval (CI) 10-22] months after diagnosis. Proteinuria ≥ 1 g/24 h at the time of biopsy was detected in 87 patients (46.8%) and the median of proteinuria was 0.89 (range 0.05-6.90) g/24 h. TG patients with proteinuria ≥ 1 g/24 h had worse 5-year graft survival (29.9% vs. 53.5%, P = 0.001) compared with proteinuria <1 g/24 h. Proteinuria was associated with graft loss in univariable Cox regression [hazard ratio (HR) 1.25, 95% CI, 1.11-1.41, P < 0.001], and in multivariable analysis (adjusted HR 1.26, 95% CI 1.11-1.42, P < 0.001) independent of other risk factors including creatinine at biopsy, positive C4d, history of rejection, and Banff lesion score mesangial matrix expansion. In this cohort of TG patients, proteinuria at indication biopsy is common and associated with a higher proportion of graft loss

    Renal Ischemia/Reperfusion Injury in Soluble Epoxide Hydrolase-Deficient Mice

    Get PDF
    Aim 20-hydroxyeicosatetraenoic acid (20-HETE) and epoxyeicosatrienoic acids (EETs) are cytochrome P450 (CYP)-dependent eicosanoids that play opposite roles in the regulation of vascular tone, inflammation, and apoptosis. 20-HETE aggravates, whereas EETs ameliorate ischemia/reperfusion (I/R)-induced organ damage. EETs are rapidly metabolized to dihydroxyeicosatrienoic acids (DHETs) by the soluble epoxide hydrolase (sEH). We hypothesized that sEH gene (EPHX2) deletion would increase endogenous EET levels and thereby protect against I/R-induced acute kidney injury (AKI). Methods Kidney damage was evaluated in male wildtype (WT) and sEH-knockout (KO)-mice that underwent 22-min renal ischemia followed by two days of reperfusion. CYP-eicosanoids were analyzed by liquid chromatography tandem mass spectrometry. Results Contrary to our initial hypothesis, renal function declined more severely in sEH-KO mice as indicated by higher serum creatinine and urea levels. The sEH-KO-mice also featured stronger tubular lesion scores, tubular apoptosis, and inflammatory cell infiltration. Plasma and renal EET/DHET-ratios were higher in sEH-KO than WT mice, thus confirming the expected metabolic consequences of sEH deficiency. However, CYP-eicosanoid profiling also revealed that renal, but not plasma and hepatic, 20-HETE levels were significantly increased in sEH-KO compared to WT mice. In line with this finding, renal expression of Cyp4a12a, the murine 20-HETE-generating CYP-enzyme, was up-regulated both at the mRNA and protein level, and Cyp4a12a immunostaining was more intense in the renal arterioles of sEH-KO compared with WT mice. Conclusion These results indicate that the potential beneficial effects of reducing EET degradation were obliterated by a thus far unknown mechanism leading to kidney-specific up- regulation of 20-HETE formation in sEH-KO-mice

    Study of the BΛc+ΛˉcKB^{-} \to \Lambda_{c}^{+} \bar{\Lambda}_{c}^{-} K^{-} decay

    Full text link
    The decay BΛc+ΛˉcKB^{-} \to \Lambda_{c}^{+} \bar{\Lambda}_{c}^{-} K^{-} is studied in proton-proton collisions at a center-of-mass energy of s=13\sqrt{s}=13 TeV using data corresponding to an integrated luminosity of 5 fb1\mathrm{fb}^{-1} collected by the LHCb experiment. In the Λc+K\Lambda_{c}^+ K^{-} system, the Ξc(2930)0\Xi_{c}(2930)^{0} state observed at the BaBar and Belle experiments is resolved into two narrower states, Ξc(2923)0\Xi_{c}(2923)^{0} and Ξc(2939)0\Xi_{c}(2939)^{0}, whose masses and widths are measured to be m(Ξc(2923)0)=2924.5±0.4±1.1MeV,m(Ξc(2939)0)=2938.5±0.9±2.3MeV,Γ(Ξc(2923)0)=0004.8±0.9±1.5MeV,Γ(Ξc(2939)0)=0011.0±1.9±7.5MeV, m(\Xi_{c}(2923)^{0}) = 2924.5 \pm 0.4 \pm 1.1 \,\mathrm{MeV}, \\ m(\Xi_{c}(2939)^{0}) = 2938.5 \pm 0.9 \pm 2.3 \,\mathrm{MeV}, \\ \Gamma(\Xi_{c}(2923)^{0}) = \phantom{000}4.8 \pm 0.9 \pm 1.5 \,\mathrm{MeV},\\ \Gamma(\Xi_{c}(2939)^{0}) = \phantom{00}11.0 \pm 1.9 \pm 7.5 \,\mathrm{MeV}, where the first uncertainties are statistical and the second systematic. The results are consistent with a previous LHCb measurement using a prompt Λc+K\Lambda_{c}^{+} K^{-} sample. Evidence of a new Ξc(2880)0\Xi_{c}(2880)^{0} state is found with a local significance of 3.8σ3.8\,\sigma, whose mass and width are measured to be 2881.8±3.1±8.5MeV2881.8 \pm 3.1 \pm 8.5\,\mathrm{MeV} and 12.4±5.3±5.8MeV12.4 \pm 5.3 \pm 5.8 \,\mathrm{MeV}, respectively. In addition, evidence of a new decay mode Ξc(2790)0Λc+K\Xi_{c}(2790)^{0} \to \Lambda_{c}^{+} K^{-} is found with a significance of 3.7σ3.7\,\sigma. The relative branching fraction of BΛc+ΛˉcKB^{-} \to \Lambda_{c}^{+} \bar{\Lambda}_{c}^{-} K^{-} with respect to the BD+DKB^{-} \to D^{+} D^{-} K^{-} decay is measured to be 2.36±0.11±0.22±0.252.36 \pm 0.11 \pm 0.22 \pm 0.25, where the first uncertainty is statistical, the second systematic and the third originates from the branching fractions of charm hadron decays.Comment: All figures and tables, along with any supplementary material and additional information, are available at https://cern.ch/lhcbproject/Publications/p/LHCb-PAPER-2022-028.html (LHCb public pages

    Measurement of the ratios of branching fractions R(D)\mathcal{R}(D^{*}) and R(D0)\mathcal{R}(D^{0})

    Full text link
    The ratios of branching fractions R(D)B(BˉDτνˉτ)/B(BˉDμνˉμ)\mathcal{R}(D^{*})\equiv\mathcal{B}(\bar{B}\to D^{*}\tau^{-}\bar{\nu}_{\tau})/\mathcal{B}(\bar{B}\to D^{*}\mu^{-}\bar{\nu}_{\mu}) and R(D0)B(BD0τνˉτ)/B(BD0μνˉμ)\mathcal{R}(D^{0})\equiv\mathcal{B}(B^{-}\to D^{0}\tau^{-}\bar{\nu}_{\tau})/\mathcal{B}(B^{-}\to D^{0}\mu^{-}\bar{\nu}_{\mu}) are measured, assuming isospin symmetry, using a sample of proton-proton collision data corresponding to 3.0 fb1{ }^{-1} of integrated luminosity recorded by the LHCb experiment during 2011 and 2012. The tau lepton is identified in the decay mode τμντνˉμ\tau^{-}\to\mu^{-}\nu_{\tau}\bar{\nu}_{\mu}. The measured values are R(D)=0.281±0.018±0.024\mathcal{R}(D^{*})=0.281\pm0.018\pm0.024 and R(D0)=0.441±0.060±0.066\mathcal{R}(D^{0})=0.441\pm0.060\pm0.066, where the first uncertainty is statistical and the second is systematic. The correlation between these measurements is ρ=0.43\rho=-0.43. Results are consistent with the current average of these quantities and are at a combined 1.9 standard deviations from the predictions based on lepton flavor universality in the Standard Model.Comment: All figures and tables, along with any supplementary material and additional information, are available at https://cern.ch/lhcbproject/Publications/p/LHCb-PAPER-2022-039.html (LHCb public pages
    corecore