56 research outputs found
Functionalized MoS2 nanosheet-capped periodic mesoporous organosilicas as a multifunctional platform for synergistic targeted chemo-photothermal therapy
The combination of different therapies into a single platform has attracted increasing attention as a potential synergistic tumor treatment. Herein, the fabrication of a novel folate targeted system for chemo-photothermal therapy by using thioether-bridged periodic mesoporous organosilica nanoparticles (PMOs) as a drug-loading vehicle is described. The novel targeted molecular bovine serum albumin-folic acid-modified MoS2 sheets (MoS2-PEI-BSA-FA) were successfully synthesized and characterized, and then utilized as a capping agent to block PMOs to control the drug release and to investigate their potential in near-infrared photothermal therapy. The resulting PMOs–DOX@MoS2–PEI-BSA-FA complexes had a uniform diameter (196 nm); high DOX loading capacity (185 mg/g PMOs-SH); excellent photothermal transformation ability; and good biocompatibility in physiological conditions. The PMOs–DOX@MoS2–PEI-BSA-FA exhibited pH-dependence and near infrared (NIR) laser irradiation-triggered DOX release. In vitro experimental results confirmed that the material exhibits excellent photothermal transfer ability, outstanding tumor killing efficiency and specificity to target tumor cells via an FA-receptor-mediated endocytosis process. The in vivo experiments further demonstrated that the platform for synergistic chemo-photothermal therapy could significantly inhibit tumor growth, which is superior to any monotherapy. Meanwhile, cytotoxicity assays and histological assessments show that the engineered PMOs@MoS2–PEI-BSA-FA have good biocompatibility, further inspiring potential biomedical applications. Overall, this work describes an excellent drug delivery system for chemo-photothermal synergistic targeted therapy having good drug release properties, which have great potential in cancer therapy
Perfluorocarbon nanodrug induced oxygen self-enriching sonodynamic therapy improves cancer immunotherapy after insufficient radiofrequency ablation
Residual lesions and undetectable metastasis after insufficient radiofrequency ablation (iRFA) are associated with earlier new metastases and poor survival in cancer patients, for induced aggressive tumor phenotype and immunosuppression. Programmed cell death protein 1(PD-1) blockade has been reported to enhance the radiofrequency ablation-elicited antitumor immunity, but its ability to eliminate incompletely ablated residual lesions has been questioned. Here, we report a combined treatment modality post iRFA based on integrating an oxygen self-enriching nanodrug PFH-Ce6 liposome@O2 nanodroplets (PCL@O2)-augmented noninvasive sonodynamic therapy (SDT) with PD-1 blockade. PCL@O2 containing Ce6 as the sonosensitizer and PFH as O2 reservoir, was synthesized as an augmented SDT nanoplatform and showed increased ROS generation to raise effective apoptosis of tumor cells, which also exposed more calreticulin to induce stronger immunogenic cell death (ICD). Combining with PD-1 blockade post iRFA, this optimized SDT induced a better anti-tumor response in MC38 tumor bearing mouse model, which not only arrested residual primary tumor progression, but also inhibited the growth of distant tumor, therefore prolonging the survival. Profiling of immune populations within the tumor draining lymph nodes and tumors further revealed that combination therapy effectively induced ICD, and promoted the maturation of dendritic cells, tumor infiltration of T cells, as well as activation of cytotoxic T lymphocytes. While iRFA alone could result in an increase of regulatory T cells (Tregs) in the residual tumors, SDT plus PD-1 blockade post iRFA reduced the number of Tregs in both primary and distant tumors. Moreover, the combined treatment could significantly initiate long-term immune memory, manifesting as elevated levels of CD8+ and CD4+ central memory cells. Therefore, this study establishes the preclinical proof of concept to apply oxygen self-enriching SDT to augment cancer immunotherapy after iRFA
Gut microbiota-derived metabolite Trimethylamine-N-oxide (TMAO) and multiple health outcomes:an umbrella review and updated meta-analysis
BACKGROUND: Trimethylamine-N-oxide (TMAO) is a gut microbiota-derived metabolite produced from dietary nutrients. Many studies have discovered that circulating TMAO levels are linked to a wide range of health outcomes. OBJECTIVES: This study aimed to summarize health outcomes related to circulating TMAO levels. METHODS: We searched Embase, Medline, Web of Science and Scopus databases from inception to 15 February 2022 to identify and update meta-analyses examining the associations between TMAO and multiple health outcomes. For each health outcome, we estimated the summary effect size, 95% prediction confidence interval (CI), between-study heterogeneity, evidence of small-study effects, and evidence of excess-significance bias. These metrics were used to evaluate the evidence credibility of the identified associations. RESULTS: This umbrella review identified 24 meta-analyses that investigated the association between circulating TMAO levels and health outcomes including all-cause mortality, cardiovascular diseases, diabetes mellitus, cancer, and renal function. We updated these meta-analyses by including a total of 82 individual studies in 18 unique health outcomes. Among them, 14 associations were nominally significant. After evidence credibility assessment, we found six (33%) associations (i.e., all-cause mortality, cardiovascular disease mortality, major adverse cardiovascular events, hypertension, diabetes mellitus, and glomerular filtration rate) to present highly suggestive evidence. CONCLUSIONS: TMAO might be a novel biomarker related to human health conditions including all-cause mortality, hypertension, cardiovascular disease, diabetes, cancer and kidney function. Further studies are needed to investigate whether circulating TMAO levels could be an intervention target for chronic disease
Core-sheath nanofibers as drug delivery system for thermoresponsive controlled release
In this work, a smart drug delivery system of core–sheath nanofiber is reported. The core-sheath nanofibers were prepared with thermoresponsive poly-(N-isopropylacrylamide) (PNIPAAm) (as core) and hydrophobic ethylcellulose (EC) (as sheath) by coaxial electrospinning. Analogous medicated fibers were prepared by loading with a model drug ketoprofen (KET). The fibers were cylindrical without phase separation and have visible core-sheath structure as shown by scanning and transmission electron microscopy. X-ray diffraction patterns demonstrated the drug with the amorphous physical form was present in the fiber matrix. Fourier transform infrared spectroscopy analysis was conducted, finding that there were significant intermolecular interactions between KET and the polymers. Water contact angle measurements proved that the core-sheath fibers from hydrophobic transformed into hydrophobic when the temperature reached the lower critical solution temperature. In vitro drug-release study of nanofibers with KET displayed that the coaxial nanofibers were able to synergistically combine the characteristics of the two polymers producing a temperature-sensitive drug delivery system with sustained release properties. In addition, they were established to be non-toxic and suitable for cell growth. These findings show that the core–sheath nanofiber is a potential candidate for controlling drug delivery system
GC–MS-Based Nontargeted and Targeted Metabolic Profiling Identifies Changes in the <i>Lentinula edodes</i> Mycelial Metabolome under High-Temperature Stress
To clarify the physiological mechanism of the Lentinula edodes (L. edodes) response to high-temperature stress, two strains of L. edodes with different tolerances were tested at different durations of high temperature, and the results showed that there were significant changes in their phenotypes and physiology. To further explore the response mechanism, we established a targeted GC–MS-based metabolomics workflow comprising a standardized experimental setup for growth, treatment and sampling of L. edodes mycelia, and subsequent GC–MS analysis followed by data processing and evaluation of quality control (QC) measures using tailored statistical and bioinformatic tools. This study identified changes in the L. edodes mycelial metabolome following different time treatments at high temperature based on nontargeted metabolites with GC-MS and further adopted targeted metabolomics to verify the results of the analysis. After multiple statistical analyses were carried out using SIMCA software, 74 and 108 differential metabolites were obtained, respectively. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis showed that the metabolic pathways with significant changes included those related to the following: amino acid metabolism, the glycolysis pathway, the tricarboxylic acid (TCA) cycle, and sugar metabolism. Most amino acids and carbohydrates enriched in these metabolic pathways were upregulated in strain 18, downregulated in strain 18N44, or the synthesis in strain 18 was higher than that in strain 18N44. This result was consistent with the physiological phenotypic characteristics of the two strains under high-temperature stress and revealed the reason why strain 18N44 was more heat-sensitive. At the same time, under high temperature, the decrease of intermediate products in glycolysis and the TCA cycle resulted in carbon starvation and insufficient energy metabolism, thus inhibiting the growth of L. edodes. In addition, the results also showed that the metabolites produced by different L. edodes strains under high-temperature stress were basically the same. However, different strains had species specificity, so the changes in the content of metabolites involved in the response to high-temperature stress were different. This provides a theoretical basis for further understanding the mechanism of the L. edodes response to high temperature and can be used to establish an evaluation system of high-temperature-resistant strains and lay the foundation for molecular breeding of new L. edodes strains resistant to high temperature
Direct synthesis and structural characteristics of ordered SBA-15 mesoporous silica containing tungsten oxides and tungsten carbides
A series Of WO3-SBA-15 materials with different Si/W ratios have been hydrothermally synthesized using tetraethyl orthosilicate (TEOS) as silica precursor, ammonium paratungstate as tungsten precursor, and EO20PO70EO20 (P] 23) as structure-directing reagent. After temperature-programmed carburization (TPC) in flowing CH4/H-2 (20/80 v/v mixture), the materials were converted to the corresponding WxC-SBA- 15 materials. The structure of the oxide and carbide materials has been characterized using X-ray diffraction (XRD), X-ray fluorescence (XRF), nitrogen adsorption -desorption measurements, Si-29 magic-angle spinning (MAS) NMR spectroscopy, Fourier transform infrared (FTIR) spectroscopy, transmission electron microscopy (TEM), and thermogravimetric and differential scanning calorimetric analysis (TG-DSC) measurements. The results show that after hydrothermal synthesis using different amounts of tungsten and subsequent carburization, the materials retain the mesopore structure of SBA- 15. When Si/W = 30-15, the majority of the tungsten is dispersed in the channels of SBA-15 with the remainder being incorporated into the framework of SBA-15 with the formation of Si-O-W bonds. The tungsten carbide exists as a single W2C phase after carburization. At higher tungsten content (Si/W = 7.5), the amount of tungsten in the framework of SBA-15 increases with the formation of both Si-O-W bonds and W-O-W bonds. The tungsten carbide formed after carburization exists as a mixture Of W2C and WC phases. A model for the distribution of tungsten in SBA-15 is proposed involving three different tungsten species: alpha-W inside SBA-15 channels, beta-W embedded in the internal surfaces of the SBA- 15 channels, and gamma-W inside the framework of SBA- 15. After temperature-programmed carburization, alpha-W sites are transformed into W2C, whereas beta-W sites afford WC; in contrast, gamma-W sites show little change after carburization.A series Of WO3-SBA-15 materials with different Si/W ratios have been hydrothermally synthesized using tetraethyl orthosilicate (TEOS) as silica precursor, ammonium paratungstate as tungsten precursor, and EO20PO70EO20 (P] 23) as structure-directing reagent. After temperature-programmed carburization (TPC) in flowing CH4/H-2 (20/80 v/v mixture), the materials were converted to the corresponding WxC-SBA- 15 materials. The structure of the oxide and carbide materials has been characterized using X-ray diffraction (XRD), X-ray fluorescence (XRF), nitrogen adsorption -desorption measurements, Si-29 magic-angle spinning (MAS) NMR spectroscopy, Fourier transform infrared (FTIR) spectroscopy, transmission electron microscopy (TEM), and thermogravimetric and differential scanning calorimetric analysis (TG-DSC) measurements. The results show that after hydrothermal synthesis using different amounts of tungsten and subsequent carburization, the materials retain the mesopore structure of SBA- 15. When Si/W = 30-15, the majority of the tungsten is dispersed in the channels of SBA-15 with the remainder being incorporated into the framework of SBA-15 with the formation of Si-O-W bonds. The tungsten carbide exists as a single W2C phase after carburization. At higher tungsten content (Si/W = 7.5), the amount of tungsten in the framework of SBA-15 increases with the formation of both Si-O-W bonds and W-O-W bonds. The tungsten carbide formed after carburization exists as a mixture Of W2C and WC phases. A model for the distribution of tungsten in SBA-15 is proposed involving three different tungsten species: alpha-W inside SBA-15 channels, beta-W embedded in the internal surfaces of the SBA- 15 channels, and gamma-W inside the framework of SBA- 15. After temperature-programmed carburization, alpha-W sites are transformed into W2C, whereas beta-W sites afford WC; in contrast, gamma-W sites show little change after carburization
Molecular Characterization and Expression Changes of the <i>bcl2l13</i> Gene in Response to Hypoxia in <i>Megalobrama amblycephala</i>
Hypoxia is a unique environmental stress, which not only reflects the insufficient oxygen supply of cells and tissues, but also occurs in various physiological and pathological environments. Mitophagy as a selective autophagy can recover and utilize damaged organelles and misfolded proteins to ensure normal cell functions and promote cell survival. Bcl2l13 (B-cell lymphoma-2 like 13) is reported to induce mitophagy as a functional mammalian homolog of Atg32. However, the function of the bcl2l13 gene is still unclear in fish. Here the sequence and structure of the bcl2l13 gene in Megalobrama amblycephala were identified and showed that bcl2l13 contained an open reading frame (ORF) of 1458 bp for encoding 485 aa. Amino acid sequence analysis indicated that Bcl2l13, as a typical anti-apoptotic protein of the Bcl2 family, contained four BH domains, one BHNo domain, and one TM domain. Further study showed that Bcl2l13 was mainly located in the mitochondria, while its localization was changed within the whole cell after the TM domain was deleted. Real-time PCR analysis revealed that bcl2l13 showed higher expression levels in early embryos. After hypoxia treatment, the mRNA levels of the bcl2l13 and autophagy-related genes were significantly up-regulated in most detected tissues, and the bcl2l13 transcription was regulated by Hif-1α mediated pathway. Additionally, the transcription activity of the bcl2l13 promoter was further analyzed using luciferase reporter assays and showed the highest activity in the promoter region from −475 to +111. These results indicated that bcl2l13 may play important roles in embryogenesis and hypoxia mediated autophagy in fish
Reference Gene Selection for Quantitative Real-Time PCR of Mycelia from Lentinula edodes under High-Temperature Stress
Housekeeping genes are important for measuring the transcription expression of functional genes; 10 traditional reference genes, TUB, TUA, GADPH, EF1, 18S, GTP, ACT, UBI, UBC, and H2A, were tested for their adequacy in Lentinula edodes (L. edodes). Using specific primers, mRNA levels of these candidate housekeeping genes were evaluated in mycelia of L. edodes, which were treated with high-temperature stress at 37°C for 0, 4, 8, 12, 18, and 24 hours. After treatment, expression stability of candidate genes was evaluated using three statistical software programs: geNorm, NormFinder, and BestKeeper. According to geNorm, TUB had the lowest M values in L. edodes strains 18 and 18N44. Using NormFinder, the best candidate reference gene in strain 18 was TUB (0.030), and the best candidate reference gene in strain 18N44 was UBI (0.047). In BestKeeper analysis, the standard deviation (SD) values of UBC, TUA, H2A, EF1, ACT, 18S, and GTP in strain 18 and those of GADPH and GTP in strain 18N44 were greater than 1; thus, these genes were disqualified as reference genes. Taken together, only UBI and TUB were found to be desirable reference genes by BestKeeper software. Based on the results of three software analyses, TUB was the most stable gene under all conditions and was verified as an appropriate reference gene for quantitative real-time polymerase chain reaction in L. edodes mycelia under high-temperature stress
- …