840 research outputs found

    NRPA: Neural Recommendation with Personalized Attention

    Full text link
    Existing review-based recommendation methods usually use the same model to learn the representations of all users/items from reviews posted by users towards items. However, different users have different preference and different items have different characteristics. Thus, the same word or similar reviews may have different informativeness for different users and items. In this paper we propose a neural recommendation approach with personalized attention to learn personalized representations of users and items from reviews. We use a review encoder to learn representations of reviews from words, and a user/item encoder to learn representations of users or items from reviews. We propose a personalized attention model, and apply it to both review and user/item encoders to select different important words and reviews for different users/items. Experiments on five datasets validate our approach can effectively improve the performance of neural recommendation.Comment: 4 pages, 4 figure

    The Smc complexes in DNA damage response

    Get PDF
    The structural maintenance of chromosomes (Smc) proteins regulate nearly all aspects of chromosome biology and are critical for genomic stability. In eukaryotes, six Smc proteins form three heterodimers--Smc1/3, Smc2/4, and Smc5/6--which together with non-Smc proteins form cohesin, condensin, and the Smc5/6 complex, respectively. Cohesin is required for proper chromosome segregation. It establishes and maintains sister-chromatid cohesion until all sister chromatids achieve bipolar attachment to the mitotic spindle. Condensin mediates chromosome condensation during mitosis. The Smc5/6 complex has multiple roles in DNA repair. In addition to their major functions in chromosome cohesion and condensation, cohesin and condensin also participate in the cellular DNA damage response. Here we review recent progress on the functions of all three Smc complexes in DNA repair and their cell cycle regulation by posttranslational modifications, such as acetylation, phosphorylation, and sumoylation. An in-depth understanding of the mechanisms by which these complexes promote DNA repair and genomic stability may help us to uncover the molecular basis of genomic instability in human cancers and devise ways that exploit this instability to treat cancers

    Numerical Calculation of Transient Thermal Characteristics in Gas-Insulated Transmission Lines

    Get PDF
    For further knowledge of the thermal characteristics in gas-insulated transmission lines (GILs) installed above ground, a finite-element model of coupling fluid field and thermal field is established, in which the corresponding assumptions and boundary conditions are given.  Transient temperature rise processes of the GIL under the conditions of variable ambient temperature, wind velocity and solar radiation are respectively investigated. Equivalent of surface convective heat transfer coefficient and heat flux boundary conditions are updated in the analysis process. Unlike the traditional finite element method (FEM), the variability of the thermal properties with temperature is considered. The calculation results are validated by the tests results reported in the literature. The conclusion provides method and theory basis for the knowledge of transient temperature rise characteristics of GILs in open environment

    Is That a Chair? Imagining Affordances Using Simulations of an Articulated Human Body

    Full text link
    For robots to exhibit a high level of intelligence in the real world, they must be able to assess objects for which they have no prior knowledge. Therefore, it is crucial for robots to perceive object affordances by reasoning about physical interactions with the object. In this paper, we propose a novel method to provide robots with an ability to imagine object affordances using physical simulations. The class of chair is chosen here as an initial category of objects to illustrate a more general paradigm. In our method, the robot "imagines" the affordance of an arbitrarily oriented object as a chair by simulating a physical sitting interaction between an articulated human body and the object. This object affordance reasoning is used as a cue for object classification (chair vs non-chair). Moreover, if an object is classified as a chair, the affordance reasoning can also predict the upright pose of the object which allows the sitting interaction to take place. We call this type of poses the functional pose. We demonstrate our method in chair classification on synthetic 3D CAD models. Although our method uses only 30 models for training, it outperforms appearance-based deep learning methods, which require a large amount of training data, when the upright orientation is not assumed to be known a priori. In addition, we showcase that the functional pose predictions of our method align well with human judgments on both synthetic models and real objects scanned by a depth camera.Comment: 7 pages, 6 figures. Accepted to ICRA202

    Dynamic Model Identification for 6-DOF Industrial Robots

    Get PDF
    A complete and systematic procedure for the dynamical parameters identification of industrial robot manipulator is presented. The system model of robot including joint friction model is linear with respect to the dynamical parameters. Identification experiments are carried out for a 6-degree-of-freedom (DOF) ER-16 robot. Relevant data is sampled while the robot is tracking optimal trajectories that excite the system. The artificial bee colony algorithm is introduced to estimate the unknown parameters. And we validate the dynamical model according to torque prediction accuracy. All the results are presented to demonstrate the efficiency of our proposed identification algorithm and the accuracy of the identified robot model

    The Kinematics Analysis of a Novel 3-DOF Cable-Driven Wind Tunnel Mechanism

    Get PDF
    The kinematics analysis method of a novel 3-DOF wind tunnel mechanism based on cable-driven parallel mechanism is provided. Rodrigues' parameters are applied to express the transformation matrix of the wire-driven mechanism in the paper. The analytical forward kinematics model is described as three quadratic equations using three Rodridgues' parameters based on the fundamental theory of parallel mechanism. Elimination method is used to remove two of the variables, so that an eighth-order polynomial with one variable is derived. From the equation, the eight sets of Rodridgues' parameters and corresponding Euler angles for the forward kinematical problem can be obtained. In the end, numerical example of both forward and inverse kinematics is included to demonstrate the presented forward-kinematics solution method. The numerical results show that the method for the position analysis of this mechanism is effective
    corecore