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The kinematics analysis method of a novel 3-DOF wind tunnel mechanism based on cable-driven parallel mechanism is provided.
Rodrigues’ parameters are applied to express the transformation matrix of the wire-driven mechanism in the paper. The analytical
forward kinematics model is described as three quadratic equations using three Rodridgues’ parameters based on the fundamental
theory of parallel mechanism. Elimination method is used to remove two of the variables, so that an eighth-order polynomial
with one variable is derived. From the equation, the eight sets of Rodridgues’ parameters and corresponding Euler angles for the
forward kinematical problem can be obtained. In the end, numerical example of both forward and inverse kinematics is included
to demonstrate the presented forward-kinematics solution method. The numerical results show that the method for the position
analysis of this mechanism is effective.

1. Introduction

Parallel manipulators have separate serial kinematic chains
that are linked to the ground and the moving platform at the
same time. They have some potential advantages over serial
robot manipulators such as accuracy, greater load capacity,
higher velocities, and accelerations. Parallel manipulators
have been developed for applications in many fields [1–4].

In the past few decades, parallel manipulators using
cable transmission have been enthusiastically studied in a
number of areas. In a cable suspended parallel robot, the
moving platform is suspended and manipulated by the
attached cables that are connected to the base; for example
cable-suspended robots are Robocrane [5, 6], ultra-high-
speed cable robot [7], dexterous hands [8, 9], parallel cable-
suspended manipulators [10, 11], teleoperating robots [12],
and robots for biological use [13]. The major advantage
of using tendon transmission lies in that actuators can be
installed on the remote base such that a lightweight and
compact design can be realized.

In recent years, many researchers paid great attention to
the use of cable-driven mechanism in wind tunnel test due to
its fewer interference on the streamline flow. Some successful

achievements have been made in the Suspension ACtive pour
Soufflerie (SACSO) project about the cable-driven parallel
suspension system in low-speed wind tunnels with 8 cables
[14], another application is WDPSS-8 developed by Huaqiao
university for use in wind tunnel test [15].

However, recent works about cable-driven wind tunnel
mechanism (CDWTM) have focused on the design of 6
degree-of-freedom (DOF); further research is still under way
to meet practical application. This article puts forward a
new 3-DOF wind tunnel equipment based on cable-driven
parallel mechanism, which can provide 3-DOF pure rotation
for the scale model in wind tunnel. Because position analysis
is one of the key complicated and important problems
for the cable-driven parallel mechanism, the forward and
inverse kinematics of the aforementioned mechanism is
the main concern of the paper. In general, a numerical
iterative scheme, such as Newton-Raphson method, can
be applied to this problem. But such method not only
demands an initial estimate that should be fairly close to
the solution of the current configuration but also cannot
guarantee the convergence to the actual solution. As is
well known there are many methods that can be used to
express transformation matrix in the closed-form solution
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Figure 1: Functional schematic of a 3-DOF CDWTM.

for position analysis; in [16] the closed-form solution of
a 3-DOF parallel manipulator is investigated by the Euler
angles, resulting in a 16th degree polynomial expression in
one single variable; screw theory [17, 18] is employed for the
forward kinematics of the parallel mechanism; Husty [19]
developed an algorithm for solving the direct kinematics of
general Stewart-Gough platforms by using Euler parameters;
an univariate polynomial of 40th degree is obtained; Lee
and Shim et al. [20]. presented the closed-form forward
kinematics of the 6-6 Stewart platform with Rodridgues’
parameters; 40 sets of solutions to describe the posture of
the moving platform have been determined. Our goal is to
develop an algebraic algorithm to provide all the solutions
of forward kinematics for the 3-DOF mechanism by means
of Rodridgues’ parameters, and a concise forward kinematics
equation can be achieved.

The reminder of the paper is the following. Section 2
briefly outlines the system. Section 3 presents a method to
obtain the analytical solution of forward kinematics. Sections
4 and 5 cover a numerical example, and conclusions are given
in the last section.

2. Description of the 3-DOF CDWTM

Figure 1 shows the kinematic model of the CDWTM with
the scale model, spherical joint, five cables, and the base
(the wind tunnel). For convenience sake, the scale model is
substituted for moving platform a1a2a3. The spherical joint
is fixed in the center of moving platform, one end of the
cables Ob4, Ob5 is connected to the spherical joint, and the
other ends b4 and b5 are attached to the upper and lower walls
of the wind tunnel, respectively. The CDWTM can achieve
3-DOF rotational motion about point O when the other
three cables a1b1, a2b2, and a3b3 are actuated cooperatively
via the motors and pulleys fixed in wind tunnel, which is
very suitable for changing the three angles of the scale model
in wind tunnel test. The base coordinate frame {OXYZ} is
located in spherical joint, with origin placed in the center of
the spherical joint. The x-axis is against the streamline flow,
the y-axis is along lift force, and the z-axis is coincident with
side force. The frame {OX ′Y ′Z′} is attached to the moving

platform, origin is the same with the base frame. Here,
vector Li connects the couple vertices ai and bi (i = 1, 2, 3).
The forward kinematics of the CDWTM is to determine
the orientation of the moving platform while the lengths
of the three cables, L1,L2, and L3 are known. γ,β, andα are
orientation of the scale model, which is formed by rotating
the axis X , the axis Y , and the axis Z, respectively.

3. Analysis of Forward Kinematics

3.1. Rodridgues’ Parameter Description of the Rotational
Matrix. Choose Rodridgues vector u = {x, y, z}T , and
it’s opposite corresponding symmetry matrix is U =[

0 −z y
z 0 −x
−y x 0

]
; here x, y, and z are called Rodridgues’ param-

eters. According to Cayley’s formula [21], the transforma-
tional matrix R can be written as follows:

R = (I−U)−1(I + U). (1)

Here I is a unit 3 × 3 matrix.
Furthermore, the inverse of [I−U] can be represented as

a function of vector U, that is,

(I−U)−1 = I + U + uuT

1 + uTu
. (2)

Taking (2) into (1), then we have

R =
(
1− uTu

)
I + 2U + 2uuT

1 + uTu
. (3)

3.2. Solution Procedure. From the geometric relationship in
Figure 1, we can have

Li = Rai − bi (i = 1, 2, 3), (4)

where ai and bi denote the position vectors ai and bi,
respectively.

So the following equation can be obtained:

L2
i = a2

i + b2
i − 2bT

i Rai (i = 1, 2, 3), (5)

where, Li, ai, and bi are the norms for the corresponding
vectors Li, ai, and bi, respectively.

For the convenience, let ei and fi be the unit vector for the
vertices vectors ai and bi, respectively, that is,

ei = ai
ai

, fi = bi

bi
(i = 1, 2, 3). (6)

And also set

cos θi = −L2
i + a2

i + b2
i

2aibi
, cos θ0i = eTi fi (i = 1, 2, 3). (7)

Here, the physical meaning of θ0i is the initial angle of θi.
So (5) can be rewritten in a concise form as

fT
i Rei = cos θi (i = 1, 2, 3). (8)
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Substitute (3) into (8), and multiply both sides by the
nonzero factor (1 + uTu). (8) becomes

uTWiu + 2HT
i u = cos θi − cos θ0i (i = 1, 2, 3), (9)

where,

Wi = fieTi + eifTi − (cos θi + cos θ0i)I, Hi = ei × fi

(i = 1, 2, 3).
(10)

There are three unknowns in (9), which are x, y, and z.
By eliminating two of the variables, the eighth polynomial in
one variable can be algebraically achieved.

In order to obtain the polynomial, we let ai =
[ai1, ai2, ai3]T and bi = [bi1, bi2, bi3]T(i = 1, 2, 3); taking the
initial conditions into (10), we have

Wi =

⎡
⎢⎢⎢⎣
wi11 w i12 wi13

wi21 w i22 wi23

wi31 wi32 w i33

⎤
⎥⎥⎥⎦ (i = 1, 2, 3) ,

H1 = (h1,h2,h3), H2 = (h4,h5,h6), H3 = (h7,h8,h9).
(11)

Here, Wi and Hi are known from the initial conditions and
(10).

According to (11), (9) can be rewritten in the following
scalar equations:

w111x
2 + w122y

2 + w133z
2 + (w112 + w121)xy

+ (w113 + w131)xz + (w123 + w132)yz

+ 2h1x + 2h2y + 2h3z = d1,

w211x
2 + w222y

2 + w233z
2 + (w212 + w221)xy

+ (w213 + w231)xz + (w223 + w232)yz

+ 2h4x + 2h5y + 2h6z = d2,

w311x
2 + w322y

2 + w333z
2 + (w312 + w321)xy

+ (w313 + w331)xz + (w323 + w332)yz

+ 2h7x + 2h8y + 2h9z = d3

(12)

with di = cos θi − cos θ0i, (i = 1, 2, 3).
To derive a univariate equation in x, simplify (12) as if x

is a known constant; we have

y2 = p3 + p2y + p1z, (13)

z2 = p6 + p5y + p4z, (14)

yz = p9 + p8y + p7z, (15)

where p1 ∼ p9 are all the function of x; the details can be
found in the appendix.

From (15), we have

y2z = p3z + p2yz + p1z
2

= p3z + p2
(
p9 + p8y + p7z

)
+ p1

(
p6 − p5y − p4z

)

= y
(
yz
) = p9y + p8y

2 + p7yz

= p9y + p8
(
p3 + p2y + p1z

)
+ p7

(
p9 + p8y + p7z

)
(16)

Amplify (14) by y; we can get

yz2 = y
(
p6 − p5y − p4z

)

= p6y − p5
(
p3 + p2y + p1z

)− p4
(
p9 + p8y + p7z

)

= z
(
yz
) = p9z + p8yz + p7z

2

= p9z + p8
(
p9 + p8y + p7z

)
+ p7

(
p6 − p5y − p4z

)
.

(17)

We also have (18) and (19) from (16) and (17)

s11 + s12y + s13z = 0, (18)

s21 + s22y + s23z = 0, (19)

where

s11 = p1p6 − p3p8 + p2p9 − p7p9,

s12 = p1p5 − p7p8 − p9,

s13 = p3 + p1p4 + p2p7 − p2
7 − p1p8,

s22 = p2p5 + p6 − p5p7 + p4p8 − p2
8,

s23 = p1p5 − p7p8 − p9.

(20)

Similarly, amplify (15) by z; we can get

s11z + s12yz + s13z
2 = s11z + s12

(
p9 + p8y + p7z

)

+ s13
(
p6 − p5y − p4z

) = 0,
(21)

that is,

s31 + s32y + s33z = 0 (22)

with

s31 = p6
(
p3 + p1p4 + p2p7 − p2

7 − p1p8
)

+
(
p1p5 − p7p8 − p9

)
p9,

s32 =
(
p5
(
p3 + p1p4 + p2p7 − p2

7 − p1p8
)

+p8
(
p1p5 − p7p8 − p9

))
,

s33 =
(
p1p6 − p3p8 + p4

(
p3 + p1p4 + p2p7 − p2

7 − p1p8
)

+p7
(
p1p5 − p7p8 − p9

)
+ p2p9 − p7p9

)
.

(23)
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Table 1: Eight sets of Rodridgues’ parameters.

x y z

1 −0.092662 0.0143444 0.0996125

2 0.0001063− 0.32055i −0.282708− 0.268418i 0.228011− 0.218445i

3 0.0001063 + 0.32055i −0.282708 + 0.268418i 0.228011 + 0.218445i

4 0.011217− 0.256745i 0.209228− 0.145614i 0.130454 + 0.129199i

5 0.011217 + 0.256745i 0.209228 + 0.145614i 0.130454− 0.129199i

6 0.0163316− 0.559761i 0.029079 + 0.313876i −0.536719 + 0.0142575i

7 0.0163316 + 0.559761i 0.029079− 0.313876i −0.536719− 0.0142575i

8 0.0359946 0.091278 0.0836409

In matrix form, Equations (18)–(22) can be arranged as
follows: ⎡

⎢⎣
s11 s12 s13

s21 s22 s23

s31 s32 s33

⎤
⎥⎦
⎡
⎢⎣

1
y
z

⎤
⎥⎦ = 0. (24)

To get the nontrivial solution of (24), the determinant of
the coefficient must be zero, that is,

|A| =
((

p1p5 − p7p8 − p9
)2
)

× (p6
(
p3 + p1p4 + p2p7 − p2

7 − p1p8
)

− (p3 + p1p4 + p2p7 − p2
7 − p1p8

)

× (p2p5 + p6 − p5p7 + p4p8 − p2
8

)

+
(
p1p5 − p7p8 − p9

)
p9

− (p5
(
p3 + p1p4 + p2p7 − p2

7 − p1p8
)

+p8
(
p1p5 − p7p8 − p9

))

× (p1p5 − p7p8 − p9
)

× (p1p6 − p3p8 + p2p9 − p7p9
)

− (p3 + p1p4 + p2p7 − p2
7 − p1p8

)

×(p3p5 − p6p7 + p4p9 − p8p9
))

+ p1p6 − p3p8

+ p4
(
p3 + p1p4 + p2p7 − p2

7 − p1p8
)

+ p7
(
p1p5 − p7p8 − p9

)

+
(
p1p6 − p3p8

+ p4
(
p3 + p1p4 + p2p7 − p2

7 − p1p8
)

+p7
(
p1p5 − p7p8 − p9

)
+ p2p9 − p7p9

)

× ((p2p5 + p6 − p5p7 + p4p8 − p2
8

)

× (p1p6 − p3p8 + p2p9 − p7p9
)

− (p1p5 − p7p8 − p9
)

×(p3p5 − p6p7 + p4p9 − p8p9
)) = 0.

(25)

From the appendix and (18)–(22), s31 is a polynomial
of x4, while s11, s21, s32, and s33 are all polynomials of x3,
and s12, s13, s22, and s23 are only polynomials of x2, so (25) is
an eighth polynomial in one variable.

4. Example

As an example, we consider a 3-DOF CDWTM with the fol-
lowing initial structural parameters, the vertices vectors of
the base are b1 = [1.6, 1.25, 1.3]T , b2 = [1.6, 1.25,−1.3]T ,
and b3 = [−2, 1.25, 0]T , the vertices vectors of the moving
platform are a1 = [0.571581674, 0.386554, 0.11777264]T ,
a2 = [0.497384168, 0.408871083,−0.27465146]T , and a3 =
[−0.791685337,− 0.038439224, 0.14750171]T . The lengths
of the three cables are L1 = 1.789090488, L2 = 1.724702626
and L3 = 1.77252834. The final eighth equation about x in
the example is

1.7746× 109x8 + 1.59847× 106x7 + 5.61258× 108x6

+ 1.4869× 107x5 + 6.75153× 107x4 + 2.93121

× 106x3 + 2.20763× 106x2 + 145723x − 8357.62 = 0.
(26)

Solving the equation, the eight sets of Rodridgues’
parameters can be achieved in Table 1.

According to (3), their eight corresponding orientations
are showed in Table 2.

Next we will demonstrate the validity of the analytic
forward kinematics by the numerical example of inverse
kinematics. Let the initial orientations of the scale model
be zero, the corresponding vertices vectors of the moving
platform are a10 = [0.6, 0.3, 0.2]T , a20 = [0.6, 0.3,−0.2]T ,
and a30 = [−0.8, 0.1, 0]T . When the moving platform has
a posture of α = 100, β = 100, and γ = 50, the
transformation matrix expressed by means of Euler angles
can be showed as following

R =
⎡
⎢⎣
cαcβ cαsβsγ − sαcγ cαsβcγ + sαsγ
sαcβ sαsβsγ + cαcγ sαsβcγ − cαsγ
−sβ cβsγ cβcγ

⎤
⎥⎦

=
⎡
⎢⎣

0.969846 −0.158083 0.185494
0.17101 0.983688 −0.0557927
−0.173648 0.0858317 0.98106

⎤
⎥⎦,

(27)
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Table 2: The eight corresponding orientations (Unit : Degree).

α β γ

1 11.1374 2.65279 −10.3294

2 19.7905− 14.0228i −26.5992− 24.9282i −7.64571− 39.2758i

3 19.7905 + 14.0228i −26.5992 + 24.9282i −7.64571 + 39.2758i

4 12.3115 + 8.6638i 21.2364− 13.6688i 4.71965− 29.9883i

5 12.3115− 8.6638i 21.2364 + 13.6688i 4.71965 + 29.9883i

6 −55.4203− 0.91328i 3.87121 + 1.79706i 0.70938− 73.4251i

7 −55.4203 + 0.91328i 3.87121− 1.79706i 0.70938 + 73.4251i

8 10 10 5

where cα = cosα, sα = sinα, cβ = cosβ, sβ = sinβ, cγ =
cos γ, sγ = sin γ

With the help of R, we can calculate the corresponding
vertices vectors of the moving platform in the base frame

ai = Rai0 (i = 1, 2, 3). (28)

From the above equation, we have a1 = [0.571581674,
0.386554, 0.11777264]T , a2 = [0.497384168, 0.408871083,
−0.27465146]T , and a3 = [−0.791685337,−0.038439224,
0.14750171]T .

So the lengths of the three cables are the norms of vectors
aibi, a2b2, a2b3, that is, L1 = 1.789090488, L2 = 1.724702626,
and L3 = 1.77252834.

The inverse kinematic results are the same with the initial
structural parameters of the forward kinematics, which
verifies that the analysis of forward kinematics is correct.

5. Conclusion

This paper presents the kinematics analysis method of a
novel 3-DOF cable-driven parallel mechanism used in wind
tunnel test, and then we employ elimination method to solve
the analytic forward kinematics of the mechanism by using
of Rodridgues’ parameters, so an eighth polynomial in one
variable is derived finally. A numerical example is included
to verify the effectiveness and accuracy of the developed
algorithm for real-time computation and control.

Appendix

We have the following:

a = w132w233w322 −w122w233w323 −w122w233w332

+ w133(−w223w322 −w232w322 + w222(w323 + w332))

−w132w222w333 + w122w223w333 + w122w232w333

+ w123(w233w322 −w222w333),

p1 = 1
a

(2h9(w133(w223 + w232)− (w123 + w132)w233)

+ w233(2h3(w323 + w332)

+ x(−w123 + w132)(w312 + w331)

+(w113 + w131)
(
w{323} + w332

))

+ w133(−2h6(w323 + w332)

+ x((w223 + w232)(w313 + w331)

−(w213 + w231)(w323 + w332)))

+ 2h6(w123 + w132)− 2h3(w223 + w232)

+ x((w123 + w132)(w213 + w231)

−(w113 + w131)(w223 + w232))w333),

p2 = 1
a

(2h8(w133(w223 + w232)− (w123 + w132)w233

+ w233(2h2(w323 + w332)

+ x(−(w123 + w132)(w312 + w321))

+(w112 + w121)(w323 + w332))

×w133(−2h5(w323 + w332)

+ x((w223 + w232)(w312 + w321))

−(w212 + w221)(w323 + w332))

+ (2h5(w123 + w132)− 2h132(w223 + w232)

+ x((w123 + w132)(w212 + w221)

−(w112 + w121)(w223 + w232)))w333),
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p3 = 1
a

(w233(w123(d3 − x(2h7 + xw311))

+ w132(d3 − x(2h7 + xw311))

−(d1 − x(2h1 + xw111))(w323 + w332))

+ w133
(
w223

(−d3 + 2xh7 + x2w311
)

+ w232
(−d3 + 2xh7 + x2w311

)

+(d2 − x(2h4 + xw211))(w323 + w332))

− (w123(d2 − x(2h4 + xw211))

+ w132(d2 − x(2h4 + xw211))

−(d1 − x(2h1 + xw111))(w223 + w232))w333),

p4 = 1
a

(2h9((w123 + w132)w222 −w122(w223 + w232))

+ xw123w222w313 − xw122w223w313 − xw122w232w313

− 2h6w132w322 − xw132w213w322 + 2h3w223w322

+ xw113w223w322 + xw131w223w322 − xw132w231w322

+ 2h322w232w322 + xw113w232w322 + xw131w232w322

+ 2h6w122w323 + xw122w213w323 − 2h3w222w323

− xw113w222w323 − xw131w222w323 + xw122w231w323

+ xw132w222w331 − xw122w223w331 − xw122w232w331

+ w123(−(2h6 + x(w213 + w231))w322

+xw222(w313 + w331))

+ (2h6w122 − (2h3 + x(w113 + w131))w222

+xw122(w213 + w231))w332),

p5 = 1
a

(2h8((w123 + w132)w222 −w122(w223 + w232))

+ xw132w222w321 − xw122w223w312 − xw122w232w312

+ xw132w222w321 − xw122w223w321 − xw122w232w321

− 2h5w132w322 − xw132w212w322 − xw132w221w322

+ 2h2w223w322 + xw112w223w322 + xw121w223w322

+ 2h2w232w322 + xw112w232w322 + xw121w232w322

+ w123(xw222(w312 + w321)

−(2h5 + x(w212 + w221))w322)

+ 2h5w122w323 + xw122w212w323 + xw122w221w323

− 2h2w222w323 − xw112w222w323 −w121w222w323

+ (w122(2h5x(w212 + w221))

−(2h2 + x(w112 + w121))w222)w332),

p6 = 1
a

(d3w122w223 − 2xh7w122w223

+ d3w122w232 − 2xh7w122w232 − x2w122w223w311

− x2w122w232w311 − d1w223w322 + 2xh1w223w322

+ x2w111w223w322 − d1w232w322 + c + x2w111w232w322

+ w123
(
w222

(−d3 + 2xh7 + x2w311
)

+(d2 − x(2h4 + xw211))w322)

+ w132
(
w222

(−d3 + 2xh7 + x2w311
)

+(d2 − x(2h4 + xw211))w322)

− d2w122w323 + 2xh4w122w323 + x2w122w211w323

+ d1w222w323 − 2xh1w222w323 − x2w111w222w323

− (w122(d2 − x(2h4 + xw211))

+
(−d1 + 2xh1 + x2w111

)
w222

)
w332

)
,

p7 = 1
a

(h9(−2w133w222 + 2w122w233)

+ w233(−(2h3 + x(w113 + w131))w322

+xw122(w313 + w331))

+ w133((2h6 + x(w213 + w231))w322

−xw222(w313 + w331))

− (2h6w122 − (2h3 + x(w113 + w131))w222

+xw122(w213 + w231))w333),

p8 = 1
a

(h8(−2w133w222 + 2w122w233)

+ w233(xw122(w312 + w321)

−(2h2 + x(w112 + w121))w322)

+ w133(−xw222(w312 + w321)

+(2h5 + x(w212 + w221))w322)

− (w122(2h5 + x(w212 + w221))

−(2h2 + x(w112 + w121))w322)w333),
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p9 = 1
a

(w133(w222(d3 − x(2h7 + xw311))

+
(−d2 + 2xh4 + x2w211

)
w322

)

+ w122
(
w233

(−d3 + 2xh7 + x2w311
)

+(d2 − x(2h4 + xw211))w333)

+(d1 − x(2h1 + xw111))(w233w322 −w222w333)).
(A.1)
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