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A complete and systematic procedure for the dynamical parameters identification of industrial robot manipulator is presented.The
systemmodel of robot including joint frictionmodel is linear with respect to the dynamical parameters. Identification experiments
are carried out for a 6-degree-of-freedom (DOF) ER-16 robot. Relevant data is sampled while the robot is tracking optimal
trajectories that excite the system. The artificial bee colony algorithm is introduced to estimate the unknown parameters. And we
validate the dynamical model according to torque prediction accuracy. All the results are presented to demonstrate the efficiency
of our proposed identification algorithm and the accuracy of the identified robot model.

1. Introduction

In recent years, industrial robots have been greatly used as
orienting devices in industry, especially in the shipbuilding,
automotive, and aerospace manufacturing industries [1, 2].
Advanced control techniques for robots have become more
andmore affordable thanks to increasing power of computing
resources and their dramatic cost reduction. However, the
dynamical model of robot contains uncertainties in some
parameters and many control methods are sensitive to their
values especially in high speed operations. Hence, dynamical
parameters identification approach has importance for devel-
oping model based controllers.

In terms of academic research, a standard robot iden-
tification procedure consists of dynamic modeling, exci-
tation trajectory design, data collection, signal preprocess,
parameter identification, and model validation [3]. The
parameter identification has attracted considerable attention
from numerous researchers. Atkeson et al. [4] proposed the
least square method to realize the estimation of dynamical
parameters. Grotjahn et al. [5] used the two-step approach
to perform the identification of robot dynamics. Gautier
and Poignet [6] obtained a dynamical model of SCARA
robot from experimental data with weighted least squares
method. Behzad et al. [7] applied fractional subspace method

to identify a robot model in simulation field. Recently, some
intelligence computation algorithms have been reported as a
useful tool in robotmodel identification.A traditional genetic
algorithm (GA) was proposed to identify the autonomous
underwater robot in [8]. Liu et al. [9] introduced the
improved genetic algorithm to obtain the space robot model.
However, while dealing with complex and large-scale param-
eters identification problems, the GA algorithm would be
stuck on local optimum.

Artificial bee colony algorithm (ABC) was first pro-
posed by Karaboga in 2005 [10] and successfully applied
to parameters identification of aerial robot [11]. The ABC
algorithm has been proved to possess a better performance
in function optimization problems, compared with differen-
tial evolution algorithm (DE), particle swarm optimization
algorithm (PSO), and GA algorithm [12]. As we know, usual
optimization algorithms conduct only one search operation
in one iteration, but ABC algorithm can conduct both local
search and global search in each iteration, and as a result the
probability of finding the optimal parameters is significantly
increased, which efficiently avoids local optimum to a large
extent. In this paper, the ABC algorithm was introduced to
conquer the parameters identification problem of the indus-
trial robots. The identification experiment was implemented
on 6-DOF ER-16 robot manipulator.

Hindawi Publishing Corporation
Journal of Robotics
Volume 2015, Article ID 471478, 9 pages
http://dx.doi.org/10.1155/2015/471478



2 Journal of Robotics

The outline of this paper is organized as follows. Firstly,
the linear robot dynamical model is given in Section 2.
Then, Section 3 presents the identification process of the
linear model based on the ABC algorithm, where excitation
design, data collection, and signal preprocess are described.
Later on, the experimental platform, identified results, and
model validation are presented in Section 4. Finally the main
conclusions are given in Section 5.

2. Dynamic Modeling

Since the 𝑛-DOF industrial robot is represented by a kine-
matic chain of rigid bodies, the exhaustive description for its
motion can be found in [13].The dynamicmodel of industrial
robot is derived by the Newton-Euler or Lagrangian method:

𝜏dyn = M (𝑞) ̈𝑞 + C (𝑞, ̇𝑞) + G (𝑞) , (1)

where 𝜏dyn is the 𝑛-vector of actuator torques as well as the
joint positions 𝑞, velocities ̇𝑞, and accelerations ̈𝑞.M(𝑞) is the
𝑛 × 𝑛 inertia matrix, C(𝑞, ̇𝑞) denotes the 𝑛-vector including
Coriolis and centrifugal forces, and G(𝑞) is the 𝑛-vector of
gravity.

According to themodifiedNewton-Euler parameters [14]
or the barycentric parameters [15], (1) can be rewritten as a
linear form:

𝜏dyn = Φdyn (𝑞, ̇𝑞, ̈𝑞) 𝜃dyn, (2)

whereΦdyn denotes the 𝑛 × 10𝑛 observation or identification
matrix, which depends only on the motion data. 𝜃dyn is
the barycentric parameter vector. This property considerably
simplifies the parameters identification.

Dynamic model of robots also contains the torques
caused by joint frictions and inertias of actuator rotors apart
from the effects of dynamic parameters in (2). The inertias of
actuator rotors are generally provided by producers, and cor-
responding torques should be compensated for the dynamic
equations. In fact, joint friction is a complex nonlinearmodel,
especially during motion reversal. In order to simplify the
model, the friction model consisting of only Coulomb and
viscous friction [16] is given by

𝜏fric = 𝑓
𝑐
sign ( ̇𝑞) + 𝑓V ̇𝑞, (3)

where 𝜏fric is the friction torques and 𝑓
𝑐
, 𝑓V, respectively,

mean the Coulomb and viscous friction parameters.
The integrated dynamicmodel of robots can be written as

𝜏
𝑠
= Φ
𝑠
(𝑞, ̇𝑞, ̈𝑞) 𝜃

𝑠
, (4)

where 𝜏
𝑠
is actuator torques including 𝜏dyn and 𝜏fric.Φ𝑠 is the

𝑛 × 12𝑛 observation matrix, and 𝜃
𝑠
is 12𝑛-vector of unknown

dynamic parameters. In addition, the dynamic parameters of
link 𝑖 are governed by the form:

𝜃
𝑖

𝑠
= [𝐼
𝑥𝑥𝑖
, 𝐼
𝑥𝑦𝑖
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𝑦𝑦𝑖
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𝑦𝑧𝑖
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, 𝑚
𝑖
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𝑦𝑖
, 𝑚
𝑖
𝑟
𝑧𝑖
, 𝑚
𝑖
, 𝑓
𝑐𝑖
,

𝑓V𝑖]
𝑇

,

(5)

where 𝐼
𝜁𝜁𝑖

(𝜁 = 𝑥, 𝑦, 𝑧) is the inertial tensor of link 𝑖. Similarly,
𝑚
𝑖
𝑟
𝜁𝑖
denotes the first-order mass moment and𝑚

𝑖
is the mass

of link 𝑖.
In general, the observation matrix Φ

𝑠
in (4) is not

a full rank; that is, not all dynamic parameters have an
influence on the dynamic model. In order to obtain a set
of minimum parameters, a case-by-case analysis method is
adopted [17]. Consequently, the dynamic model based on the
basic dynamic parameters can be rewritten as

𝜏 = Φ (𝑞, ̇𝑞, ̈𝑞) 𝜃, (6)

whereΦ is the 𝑛 × (𝑝 + 2𝑛) observation matrix. 𝜃 is (𝑝 + 2𝑛)-
vector of dynamic parameters, including the basic parameters
and the friction parameters. 𝑝 denotes the number of the
minimum dynamical parameters. 2𝑛 denotes the number of
the friction parameters.

3. Parameters Identification Procedures

3.1. Basic Principles of Identification Algorithm. In order to
introduce the search mechanism of ABC algorithm, we
should define three essential components: employed bees,
unemployed bees, and food source [11]. And the unemployed
bees are divided into following bees and scout bees.Thepopu-
lation of the colony bees is𝑁

𝑠
, the number of employed bees is

𝑁
𝑒
, and the number of unemployed bees is𝑁

𝑢
, which satisfies

the relation𝑁
𝑠
= 2𝑁
𝑒
= 2𝑁
𝑢
. We also define𝐷 as the dimen-

sion of solution vector, that is, the number of the unknown
parameters. ABC algorithm treats each unknown parameter
as a food source. The detailed procedure of executing the
proposed algorithm is described as follows.

Step 1. Randomly initialize a set of possible solutions
(𝑥
1
, . . . , 𝑥

𝑁
𝑠

), and the particular solution 𝑥
𝑖
can be governed

by

𝑥
𝑗

𝑖
= 𝑥
𝑗

min + rand (0, 1) (𝑥𝑗max − 𝑥
𝑗

min) , (7)

where 𝑗 ∈ {1, . . . , 𝐷} denotes the 𝑗th dimension of the
solution vector. 𝑥𝑗min and 𝑥

𝑗

max mean the lower and upper
bounds, respectively.

Step 2. Apply a specific function to calculate the fitness of the
solution𝑥

𝑖
according to the following equations and select the

top𝑁
𝑒
best solutions as the number of the employed bees:

fit
𝑖
=

1

(1 + 𝐹
𝑖
)

, (8)
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) ,

(9)

where fit
𝑖
is the fitness function, 𝐹

𝑖
is the objective function,

𝑁 is the data length, and 𝜏
𝜉𝑖
(𝜉 = 1, 2, 3) is the vector of

the actual torques data from the first three joints. Similarly,
𝜏
𝑝𝜉𝑖

(𝜉 = 1, 2, 3) is the vector of the predicted data from
the identified model. 𝛿

𝜉
(𝜉 = 1, 2, 3) is a weight coefficient

between 0 and 1.
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Step 3. Each employed bee searches new solution in the
neighborhood of the current position vector in the 𝑛th
iteration as follows:

V𝑗
𝑖
= 𝑥
𝑗

𝑖
+ 𝜆
𝑗

𝑖
(𝑥
𝑗

𝑖
− 𝑥
𝑗

𝑘
) , (10)

where 𝑘 ∈ {1, . . . , 𝐷}, 𝑘 ̸= 𝑖, both 𝑘 and 𝑗 are randomly
generated, and 𝜆

𝑗

𝑖
is a random parameter in the range from

−1 to 1. Next, we apply the greedy selection equation (11) to
choose the better solution between V𝑗

𝑖
and 𝑥

𝑗

𝑖
into the next

generation:

𝑥
𝑗

𝑖
=

{

{

{

V𝑗
𝑖
, fit (V𝑗

𝑖
) > fit (𝑥𝑗

𝑖
) ,

𝑥
𝑗

𝑖
, fit (V𝑗

𝑖
) ≤ fit (𝑥𝑗

𝑖
) .

(11)

Step 4. Each following bee selects an employed bee to trace
according to the parameter of probability value. The formula
of the probability method is described as

𝑝
𝑖
=

fit
𝑖

∑
𝑁𝑒

𝑖=1
fit
𝑖

. (12)

Step 5. The following bee searches in the neighborhood of
the selected employed bee’s position to find new solutions.
Update the current solution according to their fitness.

Step 6. If the search time trial is larger than the pre-
determined threshold limit and the optimal value cannot
be improved, then the location vector can be reinitialized
randomly by scout bees according to the following equation:

𝑥
𝑖
(𝑛 + 1)

=

{

{

{

𝑥min + rand (0, 1) (𝑥max − 𝑥min) , trial > limit,

𝑥
𝑖
(𝑛) , trial ≤ limit.

(13)

Step 7. Output the best solution parameters achieved at the
present time, and go back to Step 3 until termination criterion
𝑇max is met.

The detailed procedure of ABC algorithm for parameters
identification can be also depicted in Figure 1.

3.2. Excitation Trajectory. When designing an identification
experiment for the robot, it is necessary to design proper
excitation trajectories to ensure the accuracy of estimation in
presence of disturbances [18]. In this work, a finite Fourier
series is adopted as excitation trajectories, that is, a finite sum
of harmonic sine and cosine functions. The trajectories for
joint 𝑖 of a robot are designed as

𝑞
𝑖
(𝑡) = 𝑞

𝑖,𝑜
+

𝑁

∑

𝑘=1

𝑎
𝑖,𝑘
sin (𝑘𝜔

𝑓
𝑡) +

𝑁

∑

𝑘=1

𝑏
𝑖,𝑘
cos (𝑘𝜔

𝑓
𝑡) , (14)

where 𝑞
𝑖,𝑜

is the offset term and 𝜔
𝑓
is the fundamental

pulsation of the Fourier series. This Fourier series specifies
a periodic function with period 𝑇

𝑓
= 2𝜋/𝜔

𝑓
. Each Fourier
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Figure 1: Sketch of the identification algorithm.

series contains 2𝑁 + 1 parameters, and 𝑎
𝑖,𝑘
, 𝑏
𝑖,𝑘

are the
amplitudes of the sine and cosine functions.

The noise immunity and convergence rate of an identi-
fication experiment depend directly upon the constraints of
the excitation trajectories. It is important to emphasize that
the configurations for which measurements are taken must
correspond to awell-conditioned reduced observationmatrix
since the constraints represent some limits for input/output.
In the literature, the constraints of the excitation trajectories
can be described as

min cond (Φ)

𝑞min ≤ 𝑞 (𝛽) ≤ 𝑞max,





̇𝑞 (𝛽)





≤ ̇𝑞max





̈𝑞 (𝛽)





≤ ̈𝑞max

𝑤 (𝑞 (𝛽)) ⊂ 𝑊
𝑜

𝜏min ≤ Φ (𝑞 (𝛽) , ̇𝑞 (𝛽) , ̈𝑞 (𝛽)) 𝜃 ≤ 𝜏max,

(15)

where 𝑞min and 𝑞max are the lower and upper of the joint
positions, ̇𝑞max and ̈𝑞max are the upper of velocities and
accelerations, 𝛽 is optimal trajectory parameters, 𝑊

𝑜
is the

available workspace of robot, and 𝜏max is the maximum joint
torque.
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3.3. Preprocessing of Measured Data. The measured torques
are obtained through collecting the data of motor current,
which is described as follows:

𝜏 = 𝐾𝐼, (16)

where 𝐼 is motor current.𝐾 is just coefficient.
Since there are measurement noises in experiments, it is

necessary to preprocess the collection data before identifica-
tion. In order to remove outliers and attenuate the effect of
interference signal, a five-spot triple smoothing method is
adopted to smooth the raw data according to the following
equations:

𝑦
1
=

1

70

[69𝑦
1
+ 4 (𝑦

2
+ 𝑦
4
) − 6𝑦

3
− 𝑦
5
] ,

𝑦
2
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1

35

[2 (𝑦
1
+ 𝑦
5
) + 27𝑦

2
+ 12𝑦

3
− 8𝑦
4
] ,

𝑦
𝑖
=

1

35

[−3 (𝑦
𝑖−2

+ 𝑦
𝑖+2
) + 12 (𝑦

𝑖−1
+ 𝑦
𝑖+1
) + 17𝑦

𝑖
] ,

𝑦
𝑚−1

=

1

35

[2 (𝑦
𝑚−4

+ 𝑦
𝑚
) − 8𝑦

𝑚−3
+ 12𝑦

𝑚−2
+ 27𝑦

𝑚−1
] ,

𝑦
𝑚

=

1

70

[−𝑦
𝑚−4

+ 4 (𝑦
𝑚−3

+ 𝑦
𝑚−1

) − 6𝑦
𝑚−2

+ 69𝑦
𝑚
] ,

(17)

where 𝑖 = 3, . . . , 𝑚 − 2, Y = [𝑦
1
, 𝑦
2
, . . . , 𝑦

𝑚
] is the measured

raw data, and Y = [𝑦
1
, . . . , 𝑦

𝑚
]
𝑇 is the data for identification

after preprocessing. The more the number of using (17) is,
the smoother the curves will be. It should be noted that
excessively using (17) to smooth the raw data can lead to the
error of the parameters identification increasing.

In addition, the velocities and accelerations of joints
cannot be measured directly. However, these pieces of infor-
mation are usually obtained by joint positions, and numerical
differentiation for joint positions can amplify the measure-
ment noise and decrease accuracy of the velocities and
accelerations. An analytical approach is adopted to overcome
the aforementioned difficulty, which was proposed in [19]
and used successfully in [20]. The average joint positions are
approximated as finite Fourier series through the linear least
square technique and the joint velocities and accelerations
can be estimated by the derivatives of the obtained finite
Fourier series.

4. Experiment Results

4.1. Parameters Identification. An experiment is conducted
to test the proposed identification algorithm. The ER-16,
shown in Figure 2, is a 6-DOF industrial robot manipulator
without payload. And the link frame of the robot is depicted
in Figure 3. The geometric parameters of the ER-16 robot
are given in Table 1. Only the first joints are considered
here. A fundamental pulsation of 0.05Hz is selected for
the excitation trajectories, resulting in a period of 25 s. As
shown in Figure 4, the commanded trajectories are five-term

Figure 2: ER-16 6-DOF robot.
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Table 1: DH parameters of ER-16 robot.

Link 𝑖 𝛼
𝑖−1

(rad) 𝑎
𝑖−1

(m) 𝑑
𝑖
(m) 𝜃

𝑖
(rad)

1 𝜋 0 0 𝜃
1

2 𝜋/2 0.16 0 𝜃
2
− 𝜋/2

3 0 0.68 0 𝜃
3

4 𝜋/2 0.13 −0.75 𝜃
4

5 −𝜋/2 0 0 𝜃
5

6 𝜋/2 0 0 𝜃
6

−1
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Figure 5: 3D visualization of the optimized trajectory.

Fourier series, involving 11 optimal trajectory parameters for
each joint which are listed in the Appendices, and a 0.25Hz
bandwidth. The 3D visualization of this optimized trajectory
in the workspace of the robot is shown in Figure 5. The
total measured time is 25 s, corresponding to 1 period of the
excitation trajectory. The data is sampled with 1 kHz.

Identification procedures are carried out with ABC algo-
rithm in Matlab 2013b programming environment on an
Intel Core i7-3770 PC running Windows 7. No commercial
tools are used. According to [12], the performance of ABC
algorithm is relative to the population size of colony bees. As
the population size increases, the algorithm produces better
results. However, after a sufficient value for colony size, any
increment in the value does not improve the performance
of ABC algorithm. And the control parameter limit is based
on location vector reinitialized frequency. As the value of
limit approaches infinity, the total number of location vectors
reinitialized goes to zero. After many trials, in this paper,
we set the parameters of ABC algorithm as follows: 𝑁

𝑠
=

30, limit = 15, and 𝑇max = 50. It should be noted
that when the predetermined iterations exceed 50, the ABC
algorithm converged and the objective value could not be
obviously improved. And the search scope of the unknown
parameters is also listed in the Appendices. The objective
value of optimization process for the parameters is shown
in Figure 6. The result shows that the convergence speed of
our algorithm is fast and the final objective value which is
calculated by (9) is 0.3182.

The robot dynamic model for the first joints contains 21
parameters, 15 base parameters, and 6 friction parameters.
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Figure 6: Evolutionary curves of identification algorithm.

Table 2: Identification dynamic parameters.

Parameter Value
𝐼
𝑧𝑧1

(kg⋅m2) 50.4438
𝐼
𝑥𝑥2

(kg⋅m2) 37.7503
𝐼
𝑥𝑦2

(kg⋅m2) 16.1693
𝐼
𝑥𝑧2

(kg⋅m2) −23.0075
𝐼
𝑦𝑧2

(kg⋅m2) 3.2047
𝐼
𝑧𝑧2

(kg⋅m2) 1.5512
𝑚
2
𝑟
𝑥2
(kg⋅m) 5.9390

𝑚
2
𝑟
𝑦2
(kg⋅m) 46.8898

𝐼
𝑥𝑥3

(kg⋅m2) 30.9319
𝐼
𝑥𝑦3

(kg⋅m2) −0.7515
𝐼
𝑦𝑧3

(kg⋅m2) 63.2997
𝐼
𝑧𝑧3

(kg⋅m2) −0.4069
𝑚
3
𝑟
𝑥3
(kg⋅m) 2.3608

𝑚
3
𝑟
𝑦3
(kg⋅m) 1.4471

𝑓
𝑐1
(N⋅m) −0.0448

𝑓V1 (Nm⋅s/rad) 0.1144
𝑓
𝑐2
(N⋅m) 11.0195

𝑓V2 (Nm⋅s/rad) 5.3853
𝑓
𝑐3
(N⋅m) 10.9173

𝑓V3 (Nm⋅s/rad) 27.3475
𝐼
𝑥𝑧3

(kg⋅m2) 2.3092

The parameters identified by our proposed algorithm are
listed in Table 2. It should be noted that the values of
the dynamic parameters of the first three joints are much
bigger than those of the other three joints. It is reasonable
to ignore the effect of the torques caused by the 4, 5, and
6 joints. Figure 7 compares the measured torques for the
excitation trajectories with the predicted torques based on
the identified dynamical model. Although the results show
that the predicted error is slightly big during velocity reversal,
the predicted torques have the same trend as the measured
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Figure 7: Comparison of the measured torques and predicted torques.

torques. It indicates that ABC algorithm has a strong ability
to find the optimal parameters.

To verify the precision of the identified model by ABC
algorithm, the correlation coefficient between the measured
torques 𝜏

𝑖
and predicted torques 𝜏

𝑝𝑖
, defined as the nor-

malized cross-covariance function, is applied to estimate
how well the identified model can reproduce the measured
torques, and the function is defined as

𝜌 =

∑
𝑁

𝑖=1
(𝜏
𝑖
− 𝜏) (𝜏

𝑚𝑖
− 𝜏
𝑚
)

√∑
𝑁

𝑖=1
(𝜏
𝑖
− 𝜏)
2

∑
𝑁

𝑖=1
(𝜏
𝑚𝑖
− 𝜏
𝑚
)
2

, (18)

where 𝜏 = (1/𝑁)∑
𝑁

𝑖=1
𝜏
𝑖
and 𝜏

𝑚
= (1/𝑁)∑

𝑁

𝑖=1
𝜏
𝑚𝑖
. The

closer the correlation coefficient is to unity, the better the
identified model is. While the coefficient is close to zero,

the identified model is poor. As a result, the correlation
coefficients of the predicted first joints are 0.9533, 0.9856, and
0.9801, respectively. It indicates that the identified parameters
have satisfactory precision.

4.2. Model Validation. Since our aim for current stage is
to investigate the validity of the model calculated by our
proposed method, we focus on the validation test. Obviously,
the appropriate validation test is to use the identified model
in application and evaluate its success. As shown in Figure 8,
three-term Fourier series are chosen as the excitation trajec-
tories the same as the aforementioned excitation trajectories.
Corresponding optimal trajectory parameters for each joint
are listed in the Appendices. And the comparison of the
measured and predicted torques is shown in Figure 9. It
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Figure 9: Comparison of the measured torques and predicted torques.
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Table 3: Search scope of dynamical parameters.

Parameter Scope
𝐼
𝑧𝑧1

(kg⋅m2) [−60, 60]

𝐼
𝑥𝑥2

(kg⋅m2) [−60, 60]

𝐼
𝑥𝑦2

(kg⋅m2) [−30, 30]

𝐼
𝑥𝑧2

(kg⋅m2) [−40, 40]

𝐼
𝑦𝑧2

(kg⋅m2) [−10, 10]

𝐼
𝑧𝑧2

(kg⋅m2) [−10, 10]

𝑚
2
𝑟
𝑥2
(kg⋅m) [−10, 10]

𝑚
2
𝑟
𝑦2
(kg⋅m) [−80, 80]

𝐼
𝑥𝑥3

(kg⋅m2) [−60, 60]

𝐼
𝑥𝑦3

(kg⋅m2) [−10, 10]

𝐼
𝑦𝑧3

(kg⋅m2) [−80, 80]

𝐼
𝑧𝑧3

(kg⋅m2) [−10, 10]

𝑚
3
𝑟
𝑥3
(kg⋅m) [−10, 10]

𝑚
3
𝑟
𝑦3
(kg⋅m) [−10, 10]

𝑓
𝑐1
(N⋅m) [−10, 10]

𝑓V1 (Nm⋅s/rad) [−10, 10]

𝑓
𝑐2
(N⋅m) [−10, 10]

𝑓V2 (Nm⋅s/rad) [−30, 30]

𝑓
𝑐3
(N⋅m) [−30, 30]

𝑓V3 (Nm⋅s/rad) [−30, 30]

𝐼
𝑥𝑧3

(kg⋅m2) [−10, 10]

indicates that the model we obtain is capable of accu-
rately predicting the actuator torque data. In addition, the

correlation coefficients of the predicted first joints are 0.9272,
0.9534, and 0.9606 according to (18). The validation test not
only shows very good results but also demonstrates that our
proposed identification method is reliable enough.

5. Conclusion

In this paper a systematic procedure for the dynamical
parameters identification of a 6-DOF industrial robot has
been presented. We design optimal periodic excitation tra-
jectories to integrate the identification experiment, data col-
lection, and signal preprocess. All the unknown parameters
are well identified by ABC algorithm. When comparing the
measured torques and the predicting torques, we conclude
that our proposed method can accurately estimate the robot
dynamical parameters. Further, a model validation has been
carried out to verify the validity of the identified model.
The results of this paper are useful for researchers and
manufactures of industrial robots.

Appendices

A. Optimal Parameters of
Excitation Trajectories

The optimal trajectory parameters for the five-term Fourier
series are listed as follows:

𝛽
1
=

[

[

[

[

[

−0.3857 −0.1911 −0.2842 −0.2289 −0.2455 −0.5705 0.3359 0.4129 0.5744 0.4842 0.0730

0.0011 0.3597 −0.0179 −0.0117 0.0443 0.4355 0.2551 0.0386 0.0411 0.0057 −0.0065

−0.6641 −0.1638 0.5347 −0.1448 0.1029 0.0826 0.4426 0.3359 0.6126 −0.6714 −0.5792

]

]

]

]

]

. (A.1)

The optimal trajectory parameters for the three-term Fourier
series are listed as follows:

𝛽
2
=

[

[

[

[

[

0.3016 0.4006 0.6921 −0.4210 −0.0423 0.6066 −0.9719

−0.5026 −0.0051 0.0492 0.8074 0.4578 −0.2521 0.6288

−0.1276 −0.0624 0.3805 0.4006 0.3016 0.3531 0.1524

]

]

]

]

]

. (A.2)

B. Search Scope of Dynamical Parameters

After many trials, the probable suboptimal or optimal search
scope of the unknown parameters is listed in Table 3.
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