1,446 research outputs found

    Virtue integrated platform : holistic support for distributed ship hydrodynamic design

    Get PDF
    Ship hydrodynamic design today is often still done in a sequential approach. Tools used for the different aspects of CFD (Computational Fluid Dynamics) simulation (e.g. wave resistance, cavitation, seakeeping, and manoeuvring), and even for the different levels of detail within a single aspect, are often poorly integrated. VIRTUE (the VIRtual Tank Utility in Europe) project has the objective to develop a platform that will enable various distributed CFD and design applications to be integrated so that they may operate in a unified and holistic manner. This paper presents an overview of the VIRTUE Integrated Platform (VIP), e.g. research background, objectives, current work, user requirements, system architecture, its implementation, evaluation, and current development and future work

    A tunable radiation source by coupling laser-plasma-generated electrons to a periodic structure

    Get PDF
    Near-infrared radiation around 1000 nm generated from the interaction of a high-density MeV electron beam, obtained by impinging an intense ultrashort laser pulse on a solid target, with a metal grating is observed experimentally. Theoretical modeling and particle-in-cell simulation suggest that the radiation is caused by the Smith-Purcell mechanism. The results here indicate that tunable terahertz radiation with tens GV=m field strength can be achieved by using appropriate grating parameter

    Lattice Study of the Massive Schwinger Model with a θ\theta term under L\"uscher's "Admissibility" condition

    Get PDF
    We present a numerical study of the massive two-flavor QED in two dimensions with the gauge action proposed by L\"uscher, which allows only ``admissible'' gauge fields. We find that the admissibility condition does not allow any topology changes by the local updation in Hybrid Monte Carlo algorithm so that the configurations in each topological sector can be generated separately. By developing a new method to sum over different topological sectors, we investigate θ\theta vacuum effects. Combining with domain-wall fermion action, we obtain the fermion mass dependence and θ\theta dependence of the meson masses, which are consistent with the analytic results by mass perturbation in the continuum theory.Comment: 3 pages, Lattice2003(chiral

    A Review of Grid Code Requirements for the Integration of Renewable Energy Sources in Ethiopia

    Get PDF
    Rapid integration of renewable energy into the electric grid has ramifications for grid management and planning. Therefore, system operators have formulated grid code requirements to ensure that the grid continues to operate in a secure, safe, and cost-effective manner. The current state of grid code in Ethiopia, as well as the need for it, is discussed in this article. It lays out the technological grid integration requirements, with a focus on small and microgrids, which are especially important for the integration of renewable. The barriers to grid code normalization and renewable energy grid compatibility testing are identified, and suggestions for continued grid code development in Ethiopia based on Danish observations are provided. Further, a detailed comparative analysis of the Ethiopian grid code with the IEEE 1547-2003 and IEEE 1547-2018 standards is presented

    Boson-fermion mapping and dynamical supersymmetry in fermion models

    Get PDF
    We show that a dynamical supersymmetry can appear in a purely fermionic system. This ``supersymmetry without bosons" is constructed by application of a recently introduced boson-fermion Dyson mapping from a fermion space to a space comprised of collective bosons and ideal fermions. In some algebraic fermion models of nuclear structure, particular Hamiltonians may lead to collective spectra of even and odd nuclei that can be unified using the dynamical supersymmetry concept with Pauli correlations exactly taken into account.Comment: 20 pages. Revtex. One PostScript figure available on request from P

    Fluctuations of the Retarded Van der Waals Force

    Get PDF
    The retarded Van der Waals force between a polarizable particle and a perfectly conducting plate is re-examined. The expression for this force given by Casimir and Polder represents a mean force, but there are large fluctuations around this mean value on short time scales which are of the same order of magnitude as the mean force itself. However, these fluctuations occur on time scales which are typically of the order of the light travel time between the atom and the plate. As a consequence, they will not be observed in an experiment which measures the force averaged over a much longer time. In the large time limit, the magnitude of the mean squared velocity of a test particle due to this fluctuating Van der Waals force approaches a constant, and is similar to a Brownian motion of a test particle in an thermal bath with an effective temperature. However the fluctuations are not isotropic in this case, and the shift in the mean square velocity components can even be negative. We interpret this negative shift to correspond to a reduction in the velocity spread of a wavepacket. The force fluctuations discussed in this paper are special case of the more general problem of stress tensor fluctuations. These are of interest in a variety of areas fo physics, including gravity theory. Thus the effects of Van der Waals force fluctuations serve as a useful model for better understanding quantum effects in gravity theory.Comment: 14 pages, no figure

    Random Exchange Disorder in the Spin-1/2 XXZ Chain

    Full text link
    The one-dimensional XXZ model is studied in the presence of disorder in the Heisenberg Exchange Integral. Recent predictions obtained from renormalization group calculations are investigated numerically using a Lanczos algorithm on chains of up to 18 sites. It is found that in the presence of strong X-Y-symmetric random exchange couplings, a ``random singlet'' phase with quasi-long-range order in the spin-spin correlations persists. As the planar anisotropy is varied, the full zero-temperature phase diagram is obtained and compared with predictions of Doty and Fisher [Phys. Rev. B {\bf 45 }, 2167 (1992)].Comment: 9 pages + 8 plots appended, RevTex, FSU-SCRI-93-98 and ORNL/CCIP/93/1

    A Lattice Study of the Nucleon Excited States with Domain Wall Fermions

    Get PDF
    We present results of our numerical calculation of the mass spectrum for isospin one-half and spin one-half non-strange baryons, i.e. the ground and excited states of the nucleon, in quenched lattice QCD. We use a new lattice discretization scheme for fermions, domain wall fermions, which possess almost exact chiral symmetry at non-zero lattice spacing. We make a systematic investigation of the negative-parity NN^* spectrum by using two distinct interpolating operators at β=6/g2=6.0\beta=6/g^2=6.0 on a 163×32×1616^3 \times 32 \times 16 lattice. The mass estimates extracted from the two operators are consistent with each other. The observed large mass splitting between this state, N(1535)N^*(1535), and the positive-parity ground state, the nucleon N(939), is well reproduced by our calculations. We have also calculated the mass of the first positive-parity excited state and found that it is heavier than the negative-parity excited state for the quark masses studied.Comment: 46 pages, REVTeX, 11 figures included, revised version accepted for publication in Phys. Rev.

    Measurement of the Intrinsic Radiopurity of Cs-137/U-235/U-238/Th-232 in CsI(Tl) Crystal Scintillators

    Full text link
    The inorganic crystal scintillator CsI(Tl) has been used for low energy neutrino and Dark Matter experiments, where the intrinsic radiopurity is an issue of major importance. Low-background data were taken with a CsI(Tl) crystal array at the Kuo-Sheng Reactor Neutrino Laboratory. The pulse shape discrimination capabilities of the crystal, as well as the temporal and spatial correlations of the events, provide powerful means of measuring the intrinsic radiopurity of Cs-137 as well as the U-235, U-238 and Th-232 series. The event selection algorithms are described, with which the decay half-lives of Po-218, Po-214, Rn-220, Po-216 and Po-212 were derived. The measurements of the contamination levels, their concentration gradients with the crystal growth axis, and the uniformity among different crystal samples, are reported. The radiopurity in the U-238 and Th-232 series are comparable to those of the best reported in other crystal scintillators. Significant improvements in measurement sensitivities were achieved, similar to those from dedicated massive liquid scintillator detector. This analysis also provides in situ measurements of the detector performance parameters, such as spatial resolution, quenching factors, and data acquisition dead time.Comment: 28 pages, 12 figure
    corecore