1,446 research outputs found
Virtue integrated platform : holistic support for distributed ship hydrodynamic design
Ship hydrodynamic design today is often still done in a sequential approach. Tools used for the different aspects of CFD (Computational Fluid Dynamics) simulation (e.g. wave resistance, cavitation, seakeeping, and manoeuvring), and even for the different levels of detail within a single aspect, are often poorly integrated. VIRTUE (the VIRtual Tank Utility in Europe) project has the objective to develop a platform that will enable various distributed CFD and design applications to be integrated so that they may operate in a unified and holistic manner. This paper presents an overview of the VIRTUE Integrated Platform (VIP), e.g. research background, objectives, current work, user requirements, system architecture, its implementation, evaluation, and current development and future work
A tunable radiation source by coupling laser-plasma-generated electrons to a periodic structure
Near-infrared radiation around 1000 nm generated from the interaction of a high-density MeV electron beam, obtained by impinging an intense ultrashort laser pulse on a solid target, with a metal grating is observed experimentally. Theoretical modeling and particle-in-cell simulation suggest that the radiation is caused by the Smith-Purcell mechanism. The results here indicate that tunable terahertz radiation with tens GV=m field strength can be achieved by using appropriate grating parameter
Lattice Study of the Massive Schwinger Model with a term under L\"uscher's "Admissibility" condition
We present a numerical study of the massive two-flavor QED in two dimensions
with the gauge action proposed by L\"uscher, which allows only ``admissible''
gauge fields. We find that the admissibility condition does not allow any
topology changes by the local updation in Hybrid Monte Carlo algorithm so that
the configurations in each topological sector can be generated separately. By
developing a new method to sum over different topological sectors, we
investigate vacuum effects. Combining with domain-wall fermion action,
we obtain the fermion mass dependence and dependence of the meson
masses, which are consistent with the analytic results by mass perturbation in
the continuum theory.Comment: 3 pages, Lattice2003(chiral
A Review of Grid Code Requirements for the Integration of Renewable Energy Sources in Ethiopia
Rapid integration of renewable energy into the electric grid has ramifications for grid management and planning. Therefore, system operators have formulated grid code requirements to ensure that the grid continues to operate in a secure, safe, and cost-effective manner. The current state of grid code in Ethiopia, as well as the need for it, is discussed in this article. It lays out the technological grid integration requirements, with a focus on small and microgrids, which are especially important for the integration of renewable. The barriers to grid code normalization and renewable energy grid compatibility testing are identified, and suggestions for continued grid code development in Ethiopia based on Danish observations are provided. Further, a detailed comparative analysis of the Ethiopian grid code with the IEEE 1547-2003 and IEEE 1547-2018 standards is presented
Boson-fermion mapping and dynamical supersymmetry in fermion models
We show that a dynamical supersymmetry can appear in a purely fermionic
system. This ``supersymmetry without bosons" is constructed by application of a
recently introduced boson-fermion Dyson mapping from a fermion space to a space
comprised of collective bosons and ideal fermions. In some algebraic fermion
models of nuclear structure, particular Hamiltonians may lead to collective
spectra of even and odd nuclei that can be unified using the dynamical
supersymmetry concept with Pauli correlations exactly taken into account.Comment: 20 pages. Revtex. One PostScript figure available on request from P
Fluctuations of the Retarded Van der Waals Force
The retarded Van der Waals force between a polarizable particle and a
perfectly conducting plate is re-examined. The expression for this force given
by Casimir and Polder represents a mean force, but there are large fluctuations
around this mean value on short time scales which are of the same order of
magnitude as the mean force itself. However, these fluctuations occur on time
scales which are typically of the order of the light travel time between the
atom and the plate. As a consequence, they will not be observed in an
experiment which measures the force averaged over a much longer time. In the
large time limit, the magnitude of the mean squared velocity of a test particle
due to this fluctuating Van der Waals force approaches a constant, and is
similar to a Brownian motion of a test particle in an thermal bath with an
effective temperature. However the fluctuations are not isotropic in this case,
and the shift in the mean square velocity components can even be negative. We
interpret this negative shift to correspond to a reduction in the velocity
spread of a wavepacket. The force fluctuations discussed in this paper are
special case of the more general problem of stress tensor fluctuations. These
are of interest in a variety of areas fo physics, including gravity theory.
Thus the effects of Van der Waals force fluctuations serve as a useful model
for better understanding quantum effects in gravity theory.Comment: 14 pages, no figure
Random Exchange Disorder in the Spin-1/2 XXZ Chain
The one-dimensional XXZ model is studied in the presence of disorder in the
Heisenberg Exchange Integral. Recent predictions obtained from renormalization
group calculations are investigated numerically using a Lanczos algorithm on
chains of up to 18 sites. It is found that in the presence of strong
X-Y-symmetric random exchange couplings, a ``random singlet'' phase with
quasi-long-range order in the spin-spin correlations persists. As the planar
anisotropy is varied, the full zero-temperature phase diagram is obtained and
compared with predictions of Doty and Fisher [Phys. Rev. B {\bf 45 }, 2167
(1992)].Comment: 9 pages + 8 plots appended, RevTex, FSU-SCRI-93-98 and
ORNL/CCIP/93/1
A Lattice Study of the Nucleon Excited States with Domain Wall Fermions
We present results of our numerical calculation of the mass spectrum for
isospin one-half and spin one-half non-strange baryons, i.e. the ground and
excited states of the nucleon, in quenched lattice QCD. We use a new lattice
discretization scheme for fermions, domain wall fermions, which possess almost
exact chiral symmetry at non-zero lattice spacing. We make a systematic
investigation of the negative-parity spectrum by using two distinct
interpolating operators at on a
lattice. The mass estimates extracted from the two operators are consistent
with each other. The observed large mass splitting between this state,
, and the positive-parity ground state, the nucleon N(939), is well
reproduced by our calculations. We have also calculated the mass of the first
positive-parity excited state and found that it is heavier than the
negative-parity excited state for the quark masses studied.Comment: 46 pages, REVTeX, 11 figures included, revised version accepted for
publication in Phys. Rev.
Measurement of the Intrinsic Radiopurity of Cs-137/U-235/U-238/Th-232 in CsI(Tl) Crystal Scintillators
The inorganic crystal scintillator CsI(Tl) has been used for low energy
neutrino and Dark Matter experiments, where the intrinsic radiopurity is an
issue of major importance. Low-background data were taken with a CsI(Tl)
crystal array at the Kuo-Sheng Reactor Neutrino Laboratory. The pulse shape
discrimination capabilities of the crystal, as well as the temporal and spatial
correlations of the events, provide powerful means of measuring the intrinsic
radiopurity of Cs-137 as well as the U-235, U-238 and Th-232 series. The event
selection algorithms are described, with which the decay half-lives of Po-218,
Po-214, Rn-220, Po-216 and Po-212 were derived. The measurements of the
contamination levels, their concentration gradients with the crystal growth
axis, and the uniformity among different crystal samples, are reported. The
radiopurity in the U-238 and Th-232 series are comparable to those of the best
reported in other crystal scintillators. Significant improvements in
measurement sensitivities were achieved, similar to those from dedicated
massive liquid scintillator detector. This analysis also provides in situ
measurements of the detector performance parameters, such as spatial
resolution, quenching factors, and data acquisition dead time.Comment: 28 pages, 12 figure
- …